1,059 research outputs found

    Vibrations in regular and disordered fractals : from channeling waves to fractons

    Full text link
    Computer simulation of the vibrational properties of a Sierpinski carpet are reported. From the computed density of states, we find the spectral dimension d = 1.6 and the presence of singularities attributed to edges of the Brillouin zones of the underlying Bravais lattice. Then, we present mode patterns showing a new form of « channeling wave » at weak disorder becoming Anderson-localized at strong disorder. This is reflected in a non-monotonic variation of the participation ratio as a function of disorder. Analysing the mode patterns, we find no evidence supporting the conjecture of superlocalization. This study shows that the concept of a universal fracton is not appropriate to describe the two types of vibrational excitations we observe.On présente des résultats sur les propriétés de vibrations d'un tapis de Sierpinski obtenus à partir de simulations numériques. Du calcul de la densité d'états on obtient la dimension spectrale d = 1.6 ; on observe aussi la présence de singularités associées aux bords de zones de Brillouin du réseau de Bravais sous-jacent. Puis, on présente des cartes de modes où l'on voit un nouveau type d'onde « canalisé » à faible désordre qui devient localisé (au sens d'Anderson) à fort désordre. Ceci est reflété par la variation non monotone du taux de participation en fontion du désordre. De l'analyse des cartes de modes, nous n'avons trouvé aucun indice en faveur de la conjecture de « superlocalisation ». Cette étude montre que le concept de fracton « universel » ne peut décrire les deux types de vibrations observés

    Cernunnos/Xlf Deficiency Results in Suboptimal V(D)J Recombination and Impaired Lymphoid Development in Mice

    Get PDF
    Xlf/Cernunnos is unique among the core factors of the non-homologous end joining (NHEJ) DNA double strand breaks (DSBs) repair pathway, in the sense that it is not essential for V(D)J recombination in vivo and in vitro. Unlike other NHEJ deficient mice showing a SCID phenotype, Xlf−/− mice present a unique immune phenotype with a moderate B- and T-cell lymphopenia, a decreased cellularity in the thymus, and a characteristic TCRα repertoire bias associated with the P53-dependent apoptosis of CD4+CD8+ DP thymocytes. Here, we thoroughly analyzed Xlf−/− mice immune phenotype and showed that it is specifically related to the DP stage but independent of the MHC-driven antigen presentation and T-cell activation during positive selection. Instead, we show that V(D)J recombination is subefficient in Xlf−/− mice in vivo, exemplified by the presence of unrepaired DSBs in the thymus. This results in a moderate developmental delay of both B- and T-lymphocytes at key V(D)J recombination dependent stages. Furthermore, subefficient V(D)J recombination waves are accumulating during TCRα rearrangement, causing the typical TCRα repertoire bias with loss of distal Vα and Jα rearrangements

    An in vivo RNA interference screen identifies gene networks controlling Drosophila melanogaster blood cell homeostasis

    Get PDF
    <p>Abstract</p> <p>Background</p> <p>In metazoans, the hematopoietic system plays a key role both in normal development and in defense of the organism. In Drosophila, the cellular immune response involves three types of blood cells: plasmatocytes, crystal cells and lamellocytes. This last cell type is barely present in healthy larvae, but its production is strongly induced upon wasp parasitization or in mutant contexts affecting larval blood cell homeostasis. Notably, several zygotic mutations leading to melanotic mass (or "tumor") formation in larvae have been associated to the deregulated differentiation of lamellocytes. To gain further insights into the gene regulatory network and the mechanisms controlling larval blood cell homeostasis, we conducted a tissue-specific loss of function screen using hemocyte-specific Gal4 drivers and <it>UAS-dsRNA </it>transgenic lines.</p> <p>Results</p> <p>By targeting around 10% of the Drosophila genes, this <it>in vivo </it>RNA interference screen allowed us to recover 59 melanotic tumor suppressor genes. In line with previous studies, we show that melanotic tumor formation is associated with the precocious differentiation of stem-cell like blood progenitors in the larval hematopoietic organ (the lymph gland) and the spurious differentiation of lamellocytes. We also find that melanotic tumor formation can be elicited by defects either in the fat body, the embryo-derived hemocytes or the lymph gland. In addition, we provide a definitive confirmation that lymph gland is not the only source of lamellocytes as embryo-derived plasmatocytes can differentiate into lamellocytes either upon wasp infection or upon loss of function of the Friend of GATA cofactor U-shaped.</p> <p>Conclusions</p> <p>In this study, we identify 55 genes whose function had not been linked to blood cell development or function before in Drosophila. Moreover our analyses reveal an unanticipated plasticity of embryo-derived plasmatocytes, thereby shedding new light on blood cell lineage relationship, and pinpoint the Friend of GATA transcription cofactor U-shaped as a key regulator of the plasmatocyte to lamellocyte transformation.</p

    Broadband parametric amplification for multiplexed SiMOS quantum dot signals

    Full text link
    Spins in semiconductor quantum dots hold great promise as building blocks of quantum processors. Trapping them in SiMOS transistor-like devices eases future industrial scale fabrication. Among the potentially scalable readout solutions, gate-based dispersive radiofrequency reflectometry only requires the already existing transistor gates to readout a quantum dot state, relieving the need for additional elements. In this effort towards scalability, traveling-wave superconducting parametric amplifiers significantly enhance the readout signal-to-noise ratio (SNR) by reducing the noise below typical cryogenic low-noise amplifiers, while offering a broad amplification band, essential to multiplex the readout of multiple resonators. In this work, we demonstrate a 3GHz gate-based reflectometry readout of electron charge states trapped in quantum dots formed in SiMOS multi-gate devices, with SNR enhanced thanks to a Josephson traveling-wave parametric amplifier (JTWPA). The broad, tunable 2GHz amplification bandwidth combined with more than 10dB ON/OFF SNR improvement of the JTWPA enables frequency and time division multiplexed readout of interdot transitions, and noise performance near the quantum limit. In addition, owing to a design without superconducting loops and with a metallic ground plane, the JTWPA is flux insensitive and shows stable performances up to a magnetic field of 1.2T at the quantum dot device, compatible with standard SiMOS spin qubit experiments

    Coxiella burnetii Infection in Livestock, Pets, Wildlife, and Ticks in Latin America and the Caribbean: a Comprehensive Review of the Literature

    Get PDF
    Purpose of the Review Q fever , a bacterial zoonosis caused by Coxiella burnetii, is reported very heterogeneously in humans in Latin America. The objective of this study was to review the data on Coxiella burnetii Infection in animals in Latin America and the Caribbean. Recent Findings A comprehensive literature review was carried out in the 47 countries and territories of Latin America on various search engines and grouped into four groups: livestock, pets, wildlife, and ticks. Summary Thus, 113 studies were selected between 1950 and 2022. Among the 47 countries, only 25 (53%) had at least one publication related to C. burnetii infection in animals. The most productive country was Brazil (N = 51), followed by French Guiana (N = 21), and Colombia (N = 16). Studies in livestock from 20 countries have shown widely varying country-to-country rates of seroprevalence, ranging from 0 to 67%. Some studies from seven countries, especially French Guiana and Brazil, found antibodies and sometimes positive PCR in dogs and cats, generally in the context of investigations around human clustered cases. Knowledge remained fragmented about infection in wildlife from only five countries (Chile, Colombia, Brazil, French Guiana, and Uruguay). C. burnetii infection was identified by PCR in Chiroptera (7 species), Rodentia (6 species), Suina (2 species), Xenartha (1 species), Cingulata (1 species), and Perissodactyla (1 species). Studies on Coxiella sp. in ticks have been performed in 11 countries, mostly in Brazil, and mainly found Coxiella-like endosymbionts. Thus, data on C. burnetii infection in animals are sparse and incomplete in Latin America and the Caribbean, and more research is warranted

    Security Architecture for Point-to-Point Splitting Protocols

    Get PDF
    International audienceThe security of industrial supervisory control and data acquisition systems (SCADA) has become a major concern since the Stuxnet worm in 2010. As these systems are connected to the physical world, this makes them possibly hazardous if a malicious attacker is able to take over their control. SCADA can live up to 40 years, are particularly hard to patch, and quite often have no security feature at all. Thus, rather than securing them, network segregation is often used to prevent attackers from entering the industrial system. In this paper, we propose a generic solution: embed a point-to-point splitting protocol within a physical device, thus able to physically isolate networks, perform deep packet inspection and also provide encryption if necessary. We obtain a kind of next generation firewall, encompassing at least both diode and firewall features, for which conformity to security policies can be ensured. Then we define a set of associated security properties for such devices and the requirements for such a device's security architecture and filtering rules. Finally, we propose a secure hardware implementation

    Near-Real-Time Acoustic Monitoring of Beaked Whales and Other Cetaceans Using a Seaglider™

    Get PDF
    In most areas, estimating the presence and distribution of cryptic marine mammal species, such as beaked whales, is extremely difficult using traditional observational techniques such as ship-based visual line transect surveys. Because acoustic methods permit detection of animals underwater, at night, and in poor weather conditions, passive acoustic observation has been used increasingly often over the last decade to study marine mammal distribution, abundance, and movements, as well as for mitigation of potentially harmful anthropogenic effects. However, there is demand for new, cost-effective tools that allow scientists to monitor areas of interest autonomously with high temporal and spatial resolution in near-real time. Here we describe an autonomous underwater vehicle – a glider – equipped with an acoustic sensor and onboard data processing capabilities to passively scan an area for marine mammals in near-real time. The glider was tested extensively off the west coast of the Island of Hawai'i, USA. The instrument covered approximately 390 km during three weeks at sea and collected a total of 194 h of acoustic data. Detections of beaked whales were successfully reported to shore in near-real time. Manual analysis of the recorded data revealed a high number of vocalizations of delphinids and sperm whales. Furthermore, the glider collected vocalizations of unknown origin very similar to those made by known species of beaked whales. The instrument developed here can be used to cost-effectively screen areas of interest for marine mammals for several months at a time. The near-real-time detection and reporting capabilities of the glider can help to protect marine mammals during potentially harmful anthropogenic activities such as seismic exploration for sub-sea fossil fuels or naval sonar exercises. Furthermore, the glider is capable of under-ice operation, allowing investigation of otherwise inaccessible polar environments that are critical habitats for many endangered marine mammal species

    A Putative Homologue of CDC20/CDH1 in the Malaria Parasite Is Essential for Male Gamete Development

    Get PDF
    Cell-cycle progression is governed by a series of essential regulatory proteins. Two major regulators are cell-division cycle protein 20 (CDC20) and its homologue, CDC20 homologue 1 (CDH1), which activate the anaphase-promoting complex/cyclosome (APC/C) in mitosis, and facilitate degradation of mitotic APC/C substrates. The malaria parasite, Plasmodium, is a haploid organism which, during its life-cycle undergoes two stages of mitosis; one associated with asexual multiplication and the other with male gametogenesis. Cell-cycle regulation and DNA replication in Plasmodium was recently shown to be dependent on the activity of a number of protein kinases. However, the function of cell division cycle proteins that are also involved in this process, such as CDC20 and CDH1 is totally unknown. Here we examine the role of a putative CDC20/CDH1 in the rodent malaria Plasmodium berghei (Pb) using reverse genetics. Phylogenetic analysis identified a single putative Plasmodium CDC20/CDH1 homologue (termed CDC20 for simplicity) suggesting that Plasmodium APC/C has only one regulator. In our genetic approach to delete the endogenous cdc20 gene of P. berghei, we demonstrate that PbCDC20 plays a vital role in male gametogenesis, but is not essential for mitosis in the asexual blood stage. Furthermore, qRT-PCR analysis in parasite lines with deletions of two kinase genes involved in male sexual development (map2 and cdpk4), showed a significant increase in cdc20 transcription in activated gametocytes. DNA replication and ultra structural analyses of cdc20 and map2 mutants showed similar blockage of nuclear division at the nuclear spindle/kinetochore stage. CDC20 was phosphorylated in asexual and sexual stages, but the level of modification was higher in activated gametocytes and ookinetes. Changes in global protein phosphorylation patterns in the Δcdc20 mutant parasites were largely different from those observed in the Δmap2 mutant. This suggests that CDC20 and MAP2 are both likely to play independent but vital roles in male gametogenesis

    Optimasi Portofolio Resiko Menggunakan Model Markowitz MVO Dikaitkan dengan Keterbatasan Manusia dalam Memprediksi Masa Depan dalam Perspektif Al-Qur`an

    Full text link
    Risk portfolio on modern finance has become increasingly technical, requiring the use of sophisticated mathematical tools in both research and practice. Since companies cannot insure themselves completely against risk, as human incompetence in predicting the future precisely that written in Al-Quran surah Luqman verse 34, they have to manage it to yield an optimal portfolio. The objective here is to minimize the variance among all portfolios, or alternatively, to maximize expected return among all portfolios that has at least a certain expected return. Furthermore, this study focuses on optimizing risk portfolio so called Markowitz MVO (Mean-Variance Optimization). Some theoretical frameworks for analysis are arithmetic mean, geometric mean, variance, covariance, linear programming, and quadratic programming. Moreover, finding a minimum variance portfolio produces a convex quadratic programming, that is minimizing the objective function ðð¥with constraintsð ð 𥠥 ðandð´ð¥ = ð. The outcome of this research is the solution of optimal risk portofolio in some investments that could be finished smoothly using MATLAB R2007b software together with its graphic analysis
    corecore