79 research outputs found

    Omega-3 Fatty Acid Deficiency during Brain Maturation Reduces Neuronal and Behavioral Plasticity in Adulthood

    Get PDF
    Omega-3-fatty acid DHA is a structural component of brain plasma membranes, thereby crucial for neuronal signaling; however, the brain is inefficient at synthesizing DHA. We have asked how levels of dietary n-3 fatty acids during brain growth would affect brain function and plasticity during adult life. Pregnant rats and their male offspring were fed an n-3 adequate diet or n-3 deficient diets for 15 weeks. Results showed that the n-3 deficiency increased parameters of anxiety-like behavior using open field and elevated plus maze tests in the male offspring. Behavioral changes were accompanied by a level reduction in the anxiolytic-related neuropeptide Y-1 receptor, and an increase in the anxiogenic-related glucocorticoid receptor in the cognitive related frontal cortex, hypothalamus and hippocampus. The n-3 deficiency reduced brain levels of docosahexaenoic acid (DHA) and increased the ratio n-6/n-3 assessed by gas chromatography. The n-3 deficiency reduced the levels of BDNF and signaling through the BDNF receptor TrkB, in proportion to brain DHA levels, and reduced the activation of the BDNF-related signaling molecule CREB in selected brain regions. The n-3 deficiency also disrupted the insulin signaling pathways as evidenced by changes in insulin receptor (IR) and insulin receptor substrate (IRS). DHA deficiency during brain maturation reduces plasticity and compromises brain function in adulthood. Adequate levels of dietary DHA seem crucial for building long-term neuronal resilience for optimal brain performance and aiding in the battle against neurological disorders

    The impact of childhood abuse and recent stress on serum brain-derived neurotrophic factor and the moderating role of BDNF Val66Met

    Get PDF
    Contains fulltext : 98431.pdf (publisher's version ) (Open Access)RATIONALE: Recent findings show lowered brain-derived neurotrophic factor (BDNF) levels in major depressive disorder (MDD). Exposure to stressful life events may (partly) underlie these BDNF reductions, but little is known about the effects of early or recent life stress on BDNF levels. Moreover, the effects of stressful events on BDNF levels may in part be conditional upon a common variant on the BDNF gene (Val(66)Met; RS6265), with the Met allele being associated with a decrease in activity-dependent secretion of BDNF compared to the Val allele. METHODS: We investigated cross-sectionally in 1,435 individuals with lifetime MDD the impact of childhood abuse (CA) and recent life events on serum BDNF levels and assessed whether the impact of these events was moderated by the BDNF Val(66)Met polymorphism. RESULTS: Overall, BDNF Met carriers had reduced serum BDNF levels when exposed to CA in a dose-dependent way. Moreover, exposure to recent life events was also associated with decreases in BDNF levels, but this was independent of BDNF Val(66)Met. Moreover, when not exposed to CA, Met carriers had higher BDNF levels than the Val/Val individuals, who did not show decreases in BDNF associated with CA. Finally, these findings were only apparent in the MDD group without comorbid anxiety. CONCLUSIONS: These gene-environment interactions on serum BDNF levels suggest that Met carriers are particularly sensitive to (early) stressful life events, which extends previous findings on the moderating role of the BDNF Val(66)Met polymorphism in the face of stressful life events

    Contributions of animal models to the study of mood disorders

    Full text link

    Calcium-dependent modulation of FGF-2 expression in cultured cerebellar granule neurons

    No full text
    We investigated the expression for fibroblast growth factor-2 (FGF-2), in cultured rat cerebellar granule cells and its modulation by Ca2+ regulating agents. There were no significant differences in the levels of FGF-2 mRNA in cells cultured in high vs low K+. The expression of the trophic factor is induced by Ca2+ entry through the plasma membrane only in mature neurons but not at an early stage of maturation. Conversely the release of Ca2+ from intracellular stores increased the expression for FGF-2 at 2 or 7 days in culture. suggesting that is not dependent upon cellular maturation. These results suggest that specialized mechanisms can operate to regulate FGF-2 expression and that the integration of electrical and receptor-mediated signals for its modulation within cerebellar granule neurons may depend upon the maturational stage of the cells

    Early maternal deprivation reduces the expression of BDNF and NMDA receptor subunits in rat hippocampus.

    Get PDF
    Item does not contain fulltextIt is well accepted that events that interfere with the normal program of neuronal differentiation and brain maturation may be relevant for the etiology of psychiatric disorders, setting the stage for synaptic disorganization that becomes functional later in life. In order to investigate molecular determinants for these events, we examined the modulation of the neurotrophin brain-derived neurotrophic factor (BDNF) and the glutamate NMDA receptor following 24 h maternal separation (MD) on postnatal day 9. We found that in adulthood the expression of BDNF as well as of NR-2A and NR-2B, two NMDA receptor forming subunits, were significantly reduced in the hippocampus of MD rats whereas, among other structures, a slight reduction of NR-2A and 2B was detected only in prefrontal cortex. These changes were not observed acutely, nor in pre-weaning animals. Furthermore we found that in MD rats the modulation of hippocampal BDNF in response to an acute stress was altered, indicating a persistent functional impairment in its regulation, which may subserve a specific role for coping with challenging situations. We propose that adverse events taking place during brain maturation can modulate the expression of molecular players of cellular plasticity within selected brain regions, thus contributing to permanent alterations in brain function, which might ultimately lead to an increased vulnerability for psychiatric diseases

    Postnatal repeated maternal deprivation produces age-dependent changes of brain-derived neurotrophic factor expression in selected rat brain regions

    No full text
    Adverse life events occurring early in development may alter the correct program of brain maturation and render the organism more vulnerable to psychiatric disorders. Identification of persistent changes associated with these events is crucial for the development of novel therapeutic strategies
    corecore