55 research outputs found

    Combined QM-ML Approach to Accelerate Photodynamics Simulation with High Robustness

    Get PDF
    The main purpose of this work is to develop a robust approach to accelerate QMphotodynamics simulation. DFT calculation is conducted to provided a standard of the predicted properties for each molecular geometry. CNNs are applied to the descriptors to predict energies and forces for all states rapidly. Active learning is coordinated with the simulation itself, which guarantees that the underexplored regions are calculated with QM, and the model covers the region where the trajectories are reaching. Conclusions: * With the QM-ML workflow,QM photodynamics is accelerated 14.5 times* Ensemble LOL + SchNet predict energy and forces more accurately and ismore reliable on querying undersampled points* Incorporating active learning with the simulation enhances the robustnessof the workflow* Results of QM-ML + ZNSH simulation agree well with QM + FSSH* More trajectories with longer time lengths can be simulate

    Toward the understanding of DNA fluorescence : The singlet excimer of cytosine

    Get PDF
    By using the multiconfigurational second-order perturbation method CASPT2, including corrections for the basis set superposition error, the lowest-singlet excited state of the face-to-face π-stacked cytosine homodimer is revealed to be bound by about half an eV, being the source of an emissive feature consistent with the observed redshifted [email protected] [email protected] [email protected] [email protected]

    Ab initio determination of the ionization potentials of DNA and RNA nucleobases

    Get PDF
    Quantum chemical high level ab initio coupled-cluster and multiconfigurational perturbation methods have been used to compute vertical and adiabatic ionization potentials of the five canonical DNA and RNA nucleobases: uracil, thymine, cytosine, adenine, and guanine. Several states of their cations have been also calculated. The present results represent a systematic compendium of these magnitudes, establishing theoretical reference values at a level not reported before, calibrating computational strategies, and guiding the assignment of the features in the experimental photoelectron [email protected] [email protected] [email protected] [email protected]

    Peptide Metal-Organic Frameworks for Enantioselective Separation of Chiral Drugs

    Get PDF
    We report the ability of a chiral Cu(II) 3D MOF based on the tripeptide Gly-L-His-Gly (GHG) for the enantioselective separation of metamphetamine and ephedrine. Monte Carlo simulations suggest that chiral recognition is linked to preferential binding of one of the enantiomers as result of either stronger or additional H-bonds with the framework that lead to energetically more stable diastereomeric adducts. Solid phase extraction (SPE) of a racemic mixture by using Cu(GHG) as extractive phase permits isolating more than 50% of the (+)-ephedrine enantiomer as target compound in only four minutes. To the best of our knowledge, this represents the first example of a MOF capable of separating chiral polar drugs

    Characterization of Locally Excited and Charge-Transfer States of the Anticancer Drug Lapatinib by Ultrafast Spectroscopy and Computational Studies

    Full text link
    This is the peer reviewed version of the following article: I. VayĂĄ, I. Andreu, E. Lence, C. GonzĂĄlez-Bello, M. Consuelo Cuquerella, M. Navarrete-Miguel, D. Roca-SanjuĂĄn, M. A. Miranda, Chem. Eur. J. 2020, 26, 15922, which has been published in final form at https://doi.org/10.1002/chem.202001336. This article may be used for non-commercial purposes in accordance with Wiley Terms and Conditions for Self-Archiving.[EN] Lapatinib (LAP) is an anticancer drug, which is metabolized to theN- and O-dealkylated products (N-LAP andO-LAP, respectively). In view of the photosensitizing potential of related drugs, a complete experimental and theoretical study has been performed on LAP,N-LAP andO-LAP, both in solution and upon complexation with human serum albumin (HSA). In organic solvents, coplanar locally excited (LE) emissive states are generated; they rapidly evolve towards twisted intramolecular charge-transfer (ICT) states. By contrast, within HSA only LE states are detected. Accordingly, femtosecond transient absorption reveals a very fast switching (ca. 2 ps) from LE (lambda(max)=550 nm) to ICT states (lambda(max)=480 nm) in solution, whereas within HSA the LE species become stabilized and live much longer (up to the ns scale). Interestingly, molecular dynamics simulation studies confirm that the coplanar orientation is preferred for LAP (or to a lesser extentN-LAP) within HSA, explaining the experimental results.Financial support from the Spanish Government (RYC-2015-17737, CTQ2017-89416-R, ISCIII grants RD16/0006/0004, PI16/01877 and CPII16/00052, SAF2016-75638-R, RYC-2015-19234, CTQ2017-87054-C2-2-P, and MDM-2015-0538), Conselleria d'Educacio Cultura i Esport (PROMETEO/2017/075), the Xunta de Galicia [ED431B 2018/04 and Centro singular de investigacion de Galicia accreditation 2019-2022 (ED431G 2019/03)] and the European Regional Development Fund is gratefully acknowledged. We thank the Centro de Supercomputacion de Galicia (CESGA) for use of the Finis Terrae computer.VayĂĄ PĂ©rez, I.; Andreu Ros, MI.; Lence, E.; GonzĂĄlez-Bello, C.; Cuquerella Alabort, MC.; Navarrete-Miguel, M.; Roca-SanjuĂĄn, D.... (2020). Characterization of Locally Excited and Charge-Transfer States of the Anticancer Drug Lapatinib by Ultrafast Spectroscopy and Computational Studies. Chemistry - A European Journal. 26(68):15922-15930. https://doi.org/10.1002/chem.202001336S15922159302668Bray, F., Ferlay, J., Soerjomataram, I., Siegel, R. L., Torre, L. A., & Jemal, A. (2018). Global cancer statistics 2018: GLOBOCAN estimates of incidence and mortality worldwide for 36 cancers in 185 countries. CA: A Cancer Journal for Clinicians, 68(6), 394-424. doi:10.3322/caac.21492Nicholson, R. ., Gee, J. M. ., & Harper, M. . (2001). EGFR and cancer prognosis. European Journal of Cancer, 37, 9-15. doi:10.1016/s0959-8049(01)00231-3Yashiro, M., Qiu, H., Hasegawa, T., Zhang, X., Matsuzaki, T., & Hirakawa, K. (2011). An EGFR inhibitor enhances the efficacy of SN38, an active metabolite of irinotecan, in SN38-refractory gastric carcinoma cells. British Journal of Cancer, 105(10), 1522-1532. doi:10.1038/bjc.2011.397Gonzalez, G., & Lage, A. (2007). Cancer Vaccines for Hormone/Growth Factor Immune Deprivation:A Feasible Approach for Cancer Treatment. Current Cancer Drug Targets, 7(3), 229-241. doi:10.2174/156800907780618310Sigismund, S., Avanzato, D., & Lanzetti, L. (2017). Emerging functions of the EGFR in cancer. Molecular Oncology, 12(1), 3-20. doi:10.1002/1878-0261.12155Thomas, R., & Weihua, Z. (2019). Rethink of EGFR in Cancer With Its Kinase Independent Function on Board. Frontiers in Oncology, 9. doi:10.3389/fonc.2019.00800MEDINA, P., & GOODIN, S. (2008). Lapatinib: A dual inhibitor of human epidermal growth factor receptor tyrosine kinases. Clinical Therapeutics, 30(8), 1426-1447. doi:10.1016/j.clinthera.2008.08.008Nolting, M., Schneider-Merck, T., & Trepel, M. (2014). Lapatinib. Small Molecules in Oncology, 125-143. doi:10.1007/978-3-642-54490-3_7Schroeder, R., Stevens, C., & Sridhar, J. (2014). Small Molecule Tyrosine Kinase Inhibitors of ErbB2/HER2/Neu in the Treatment of Aggressive Breast Cancer. Molecules, 19(9), 15196-15212. doi:10.3390/molecules190915196Spector, N. L., Xia, W., Burris, H., Hurwitz, H., Dees, E. C., Dowlati, A., 
 Bacus, S. (2005). Study of the Biologic Effects of Lapatinib, a Reversible Inhibitor of ErbB1 and ErbB2 Tyrosine Kinases, on Tumor Growth and Survival Pathways in Patients With Advanced Malignancies. Journal of Clinical Oncology, 23(11), 2502-2512. doi:10.1200/jco.2005.12.157Krasner, J. (1972). Drug-Protein Interaction. Pediatric Clinics of North America, 19(1), 51-63. doi:10.1016/s0031-3955(16)32666-9Peters, T. (1995). Ligand Binding by Albumin. All About Albumin, 76-132. doi:10.1016/b978-012552110-9/50005-2Molins-Molina, O., Lence, E., Limones-Herrero, D., GonzĂĄlez-Bello, C., Miranda, M. A., & JimĂ©nez, M. C. (2019). Identification of a common recognition center for a photoactive non-steroidal antiinflammatory drug in serum albumins of different species. Organic Chemistry Frontiers, 6(1), 99-109. doi:10.1039/c8qo01045eMolins-Molina, O., PĂ©rez-Ruiz, R., Lence, E., GonzĂĄlez-Bello, C., Miranda, M. A., & JimĂ©nez, M. C. (2019). Photobinding of Triflusal to Human Serum Albumin Investigated by Fluorescence, Proteomic Analysis, and Computational Studies. Frontiers in Pharmacology, 10. doi:10.3389/fphar.2019.01028Monteiro, A. F., Rato, M., & Martins, C. (2016). Drug-induced photosensitivity: Photoallergic and phototoxic reactions. Clinics in Dermatology, 34(5), 571-581. doi:10.1016/j.clindermatol.2016.05.006VayĂĄ, I., Andreu, I., Monje, V. T., JimĂ©nez, M. C., & Miranda, M. A. (2015). Mechanistic Studies on the Photoallergy Mediated by Fenofibric Acid: Photoreactivity with Serum Albumins. Chemical Research in Toxicology, 29(1), 40-46. doi:10.1021/acs.chemrestox.5b00357VayĂĄ, I., Lhiaubet-Vallet, V., JimĂ©nez, M. C., & Miranda, M. A. (2014). Photoactive assemblies of organic compounds and biomolecules: drug–protein supramolecular systems. Chem. Soc. Rev., 43(12), 4102-4122. doi:10.1039/c3cs60413fIshikawa, T., Kamide, R., & Niimura, M. (1994). Photoleukomelanodermatitis (Kobori) Induced by Afloqualone. The Journal of Dermatology, 21(6), 430-433. doi:10.1111/j.1346-8138.1994.tb01768.xKabir, M. Z., Mukarram, A. K., Mohamad, S. B., Alias, Z., & Tayyab, S. (2016). Characterization of the binding of an anticancer drug, lapatinib to human serum albumin. Journal of Photochemistry and Photobiology B: Biology, 160, 229-239. doi:10.1016/j.jphotobiol.2016.04.005Shen, G.-F., Liu, T.-T., Wang, Q., Jiang, M., & Shi, J.-H. (2015). Spectroscopic and molecular docking studies of binding interaction of gefitinib, lapatinib and sunitinib with bovine serum albumin (BSA). Journal of Photochemistry and Photobiology B: Biology, 153, 380-390. doi:10.1016/j.jphotobiol.2015.10.023Wilson, J. N., Liu, W., Brown, A. S., & Landgraf, R. (2015). Binding-induced, turn-on fluorescence of the EGFR/ERBB kinase inhibitor, lapatinib. Organic & Biomolecular Chemistry, 13(17), 5006-5011. doi:10.1039/c5ob00239gLi, M.-D., Yan, Z., Zhu, R., Phillips, D. L., Aparici-Espert, I., Lhiaubet-Vallet, V., & Miranda, M. A. (2018). Enhanced Drug Photosafety by Interchromophoric Interaction Owing to Intramolecular Charge Separation. Chemistry - A European Journal, 24(25), 6654-6659. doi:10.1002/chem.201800716VayĂĄ, I., BonancĂ­a, P., JimĂ©nez, M. C., Markovitsi, D., Gustavsson, T., & Miranda, M. A. (2013). Excited state interactions between flurbiprofen and tryptophan in drug–protein complexes and in model dyads. Fluorescence studies from the femtosecond to the nanosecond time domains. Physical Chemistry Chemical Physics, 15(13), 4727. doi:10.1039/c3cp43847cAndersson, K., Malmqvist, P., & Roos, B. O. (1992). Second‐order perturbation theory with a complete active space self‐consistent field reference function. The Journal of Chemical Physics, 96(2), 1218-1226. doi:10.1063/1.462209Andersson, K., Malmqvist, P. A., Roos, B. O., Sadlej, A. J., & Wolinski, K. (1990). Second-order perturbation theory with a CASSCF reference function. The Journal of Physical Chemistry, 94(14), 5483-5488. doi:10.1021/j100377a012Roca-SanjuĂĄn, D., Aquilante, F., & Lindh, R. (2011). Multiconfiguration second-order perturbation theory approach to strong electron correlation in chemistry and photochemistry. Wiley Interdisciplinary Reviews: Computational Molecular Science, 2(4), 585-603. doi:10.1002/wcms.97In:http://www.ccdc.cam.ac.uk/solutions/csd-discovery/components/gold/(accessed January 22 2020).Zunszain, P. A., Ghuman, J., Komatsu, T., Tsuchida, E., & Curry, S. (2003). BMC Structural Biology, 3(1), 6. doi:10.1186/1472-6807-3-6D. A. Case R. M. Betz D. S. Cerutti T. E. Cheatham T. A. Darden R. E. Duke T. J. Giese H. Gohlke A. W. Goetz N. Homeyer S. Izadi P. Janowski J. J. Kaus A. Kovalenko T. S. Lee S. LeGrand P. Li C. Lin T. Luchko R. Luo B. Madej D. Mermelstein K. M. M. Merz G. Monard H. Nguyen H. Nguyen I. Omelyan A. Onufriev D. R. R. Roe A. Roitberg C. Sagui C. L. Simmerling W. M. Botello-Smith J. Swails R. Walker J. Wang R. M. Wolf X. Wu L. Xiao P. A. Kollman AMBER2016 University of California San Francisco.Wybranowski, T., Cyrankiewicz, M., Ziomkowska, B., & Kruszewski, S. (2008). The HSA affinity of warfarin and flurbiprofen determined by fluorescence anisotropy measurements of camptothecin. Biosystems, 94(3), 258-262. doi:10.1016/j.biosystems.2008.05.034Itoh, T., Saura, Y., Tsuda, Y., & Yamada, H. (1997). Stereoselectivity and enantiomer-enantiomer interactions in the binding of ibuprofen to human serum albumin. Chirality, 9(7), 643-649. doi:10.1002/(sici)1520-636x(1997)9:73.0.co;2-8PĂ©rez-RuĂ­z, R., Lence, E., Andreu, I., Limones-Herrero, D., GonzĂĄlez-Bello, C., Miranda, M. A., & JimĂ©nez, M. C. (2017). A New Pathway for Protein Haptenation by ÎČ-Lactams. Chemistry - A European Journal, 23(56), 13986-13994. doi:10.1002/chem.201702643Gaussian 09 Revision D.01 M. J. Frisch G. W. Trucks H. B. Schlegel G. E. Scuseria M. A. Robb J. R. Cheeseman G. Scalmani V. Barone B. Mennucci G. A. Petersson H. Nakatsuji M. Caricato X. Li H. P. Hratchian A. F. Izmaylov J. Bloino G. Zheng J. L. Sonnenberg M. Hada M. Ehara K. Toyota R. Fukuda J. Hasegawa M. Ishida T. Nakajima Y. Honda O. Kitao H. Nakai T. Vreven J. J. A. Montgomery J. E. Peralta F. Ogliaro M. Bearpark J. J. Heyd E. Brothers K. N. Kudin V. N. Staroverov R. Kobayashi J. Normand K. Raghavachari A. Rendell J. C. Burant S. S. Iyengar J. Tomasi M. Cossi N. Rega J. M. Millam M. Klene J. E. Knox J. B. Cross V. Bakken C. Adamo J. Jaramillo R. Gomperts R. E. Stratmann O. Yazyev A. J. Austin R. Cammi C. Pomelli J. W. Ochterski R. L. Martin K. Morokuma V. G. Zakrzewski G. A. Voth P. Salvador J. J. Dannenberg S. Dapprich A. D. Daniels Ö. Farkas J. B. Foresman J. V. Ortiz J. Cioslowski D. J. Fox 2013 Wallingford CT.Aquilante, F., Autschbach, J., Carlson, R. K., Chibotaru, L. F., Delcey, M. G., De Vico, L., 
 Lindh, R. (2015). Molcas 8: New capabilities for multiconfigurational quantum chemical calculations across the periodic table. Journal of Computational Chemistry, 37(5), 506-541. doi:10.1002/jcc.24221Forsberg, N., & Malmqvist, P.-Å. (1997). Multiconfiguration perturbation theory with imaginary level shift. Chemical Physics Letters, 274(1-3), 196-204. doi:10.1016/s0009-2614(97)00669-6W. L. DeLano in The PyMOL Molecular Graphics System.http://www.pymol.org/

    Building a functionalizable, potent chemiluminescent agent: A rational design study on 6,8-substituted luminol derivatives

    Get PDF
    Luminol is a prominent chemiluminescent (CL) agent, finding applications across numerous fields, including forensics, immunoassays, and imaging. Different substitution patterns on the aromatic ring can enhance or decrease its CL efficiency. We herein report a systematic study on the synthesis and photophysics of all possible 6,8-disubstituted luminol derivatives bearing H, Ph, and/or Me substituents. Their CL responses are monitored at three pH values (8, 10, and 12), thus revealing the architecture with the optimum CL efficiency. The most efficient pattern is used for the synthesis of a strongly CL luminol derivative, bearing a functional group for further, straightforward derivatization. This adduct exhibits an unprecedented increase in chemiluminescence efficiency at pH=12, pH=10, and especially at pH=8 (closer to the biologically-relevant conditions), compared to luminol. Complementary work on the fluorescence of the emissive species, as well as quantum chemistry computations are employed for the rationalization of the observed results
    • 

    corecore