33 research outputs found

    Allelic polymorphism in the T cell receptor and its impact on immune responses

    Get PDF
    In comparison to human leukocyte antigen (HLA) polymorphism, the impact of allelic sequence variation within T cell receptor (TCR) loci is much less understood. Particular TCR loci have been associated with autoimmunity, but the molecular basis for this phenomenon is undefined. We examined the T cell response to an HLA-B*3501-restricted epitope (HPVGEADYFEY) from Epstein-Barr virus (EBV), which is frequently dominated by a TRBV9*01 public TCR (TK3). However, the common allelic variant TRBV9*02, which differs by a single amino acid near the CDR2β loop (Gln55→His55), was never used in this response. The structure of the TK3 TCR, its allelic variant, and a nonnaturally occurring mutant (Gln55→Ala55) in complex with HLA-B*3501 revealed that the Gln55→His55 polymorphism affected the charge complementarity at the TCR-peptide-MHC interface, resulting in reduced functional recognition of the cognate and naturally occurring variants of this EBV peptide. Thus, polymorphism in the TCR loci may contribute toward variability in immune responses and the outcome of infection

    Killer cell immunoglobulin-like receptor 3DL1 polymorphism defines distinct hierarchies of HLA class I recognition

    Get PDF
    Natural killer (NK) cells play a key role in immunity, but how HLA class I (HLA-I) and killer cell immunoglobulin-like receptor 3DL1 (KIR3DL1) polymorphism impacts disease outcome remains unclear. KIR3DL1 (*001/*005/*015) tetramers were screened for reactivity against a panel of HLA-I molecules. This revealed different and distinct hierarchies of specificity for each KIR3DL1 allotype, with KIR3DL1*005 recognizing the widest array of HLA-I ligands. These differences were further reflected in functional studies using NK clones expressing these specific KIR3DL1 allotypes. Unexpectedly, the Ile/Thr80 dimorphism in the Bw4-motif did not categorically define strong/weak KIR3DL1 recognition. Although the KIR3DL1*001, *005, and *015 polymorphisms are remote from the KIR3DL1-HLA-I interface, the structures of these three KIR3DL1-HLA-I complexes showed that the broader HLA-I specificity of KIR3DL1*005 correlated with an altered KIR3DL1*005 interdomain positioning and increased mobility within its ligand-binding site. Collectively, we provide a generic framework for understanding the impact of KIR3DL1 polymorphism on the recognition of HLA-I allomorphs

    A common dimerization interface in bacterial response regulators KdpE and TorR

    No full text
    Bacterial response regulators are key regulatory proteins that function as the final elements of so-called two-component signaling systems. The activities of response regulators in vivo are modulated by phosphorylation that results from interactions between the response regulator and its cognate histidine protein kinase. The level of response regulator phosphorylation, which is regulated by intra-or extracellular signals sensed by the histidine protein kinase, ultimately determines the output response that is initiated or carried out by the response regulator. We have recently hypothesized that in the OmpR/PhoB subfamily of response regulator transcription factors, this activation involves a common mechanism of dimerization using a set of highly conserved residues in the α4–β5–α5 face. Here we report the X-ray crystal structures of the regulatory domains of response regulators TorR (1.8 Å), Ca2+-bound KdpE (2.0 Å), and Mg2+/BeF3−-bound KdpE (2.2 Å), both members of the OmpR/ PhoB subfamily from Escherichia coli. Both regulatory domains form symmetric dimers in the asymmetric unit that involve the α4–β5–α5 face. As observed previously in other OmpR/PhoB response regulators, the dimer interfaces are mediated by highly conserved residues within this subfamily. These results provide further evidence that most all response regulators of the OmpR/ PhoB subfamily share a common mechanism of activation by dimerization

    Bisubstrate UDP-peptide conjugates as human O-GlcNAc transferase inhibitors

    Get PDF
    Inhibitors of OGT (O-GlcNAc transferase) are valuable tools to study the cell biology of protein O-GlcNAcylation. We report OGT bisubstrate-linked inhibitors (goblins) in which the acceptor serine in the peptide VTPVSTA is covalently linked to UDP, eliminating the GlcNAc pyranoside ring. Goblin1 co-crystallizes with OGT, revealing an ordered C(3) linker and retained substrate-binding modes, and binds the enzyme with micromolar affinity, inhibiting glycosyltransfer on to protein and peptide substrates
    corecore