2,712 research outputs found
Four Years Since COVID-19 Day Zero: A Time to Evaluate Past and Future Pandemic Control Policies and Practices in Sub-Saharan Africa?
Four years after the first case of COVID-19, the world is still determining how best to prevent and control the long-term effects of SARS-CoV-2 infection. Non-pharmaceutical interventions (NPIs) were employed at the start of the pandemic as the only available options, prior to effective vaccines and antiviral agents. The World Health Organization recommended dual vaccination for 70% worldwide as the threshold for a return to “normal” community life. Immunization rates needed to increase in all global regions, irrespective of socioeconomic status, necessitating more equitable access. During the pandemic, wealthier countries hoarded vaccine supplies even when their citizens were immunized. This highlights the already enormous difficulties in healthcare provision faced by low-income sub-Saharan African countries, which remain at risk as industrialized nations have progressed to a post-pandemic era. Thus, in addition to redoubling vaccination efforts public health policymakers should consider ongoing and future use of NPIs. In this narrative account, we advocate that various NPI practices should not be shelved; rather, more research is needed to evaluate their impact in parallel with booster vaccination. This especially applies to so-called “long COVID”. Lessons learned from implementing best practices in resource-limited settings should be incorporated into preparedness guidelines for future infectious disease outbreaks
Neuroarthropathy in diabetes: pathogenesis of Charcot arthropathy.
Charcot neuroarthropathy is a rare but serious complication of diabetes, causing progressive destruction of the bones and joints of the foot leading to deformity, altered biomechanics and an increased risk of ulceration. Management is complicated by a lack of consensus on diagnostic criteria and an incomplete understanding of the pathogenesis. In this review, we consider recent insights into the development of Charcot neuroarthropathy. It is likely to be dependent on several interrelated factors which may include a genetic pre-disposition in combination with diabetic neuropathy. This leads to decreased neuropeptides (nitric oxide and calcitonin gene-related peptide), which may affect the normal coupling of bone formation and resorption, and increased levels of Receptor activator of nuclear factor kappa-B ligand, potentiating osteoclastogenesis. Repetitive unrecognized trauma due to neuropathy increases levels of pro-inflammatory cytokines (interleukin-1β, interleukin-6, tumour necrosis factor α) which could also contribute to increased bone resorption, in combination with a pre-inflammatory state, with increased autoimmune reactivity and a profile of monocytes primed to transform into osteoclasts - cluster of differentiation 14 (CD14). Increased blood glucose and loss of circulating Receptor for Advanced Glycation End-Products (AGLEPs), leading to increased non-enzymatic glycation of collagen and accumulation of AGLEPs in the tissues of the foot, may also contribute to the pathological process. An understanding of the relative contributions of each of these mechanisms and a final common pathway for the development of Charcot neuroarthropathy are still lacking. Cite this article: S. E. Johnson-Lynn, A. W. McCaskie, A. P. Coll, A. H. N. Robinson. Neuroarthropathy in diabetes: pathogenesis of Charcot arthropathy. Bone Joint Res 2018;7:373-378. DOI: 10.1302/2046-3758.75.BJR-2017-0334.R1
Computing infrared spectra of proteins using the exciton model
The ability to compute from first principles the infrared spectrum of a protein in solution phase representing a biological system would provide a useful connection to atomistic models of protein structure and dynamics. Indeed, such calculations are a vital complement to 2DIR experimental measurements, allowing the observed signals to be interpreted in terms of detailed structural and dynamical information. In this article, we have studied nine structurally and spectroscopically well-characterized proteins, representing a range of structural types. We have simulated the equilibrium conformational dynamics in an explicit point charge water model. Using the resulting trajectories based on MD simulations, we have computed the one and two dimensional infrared spectra in the Amide I region, using an exciton approach, in which a local mode basis of carbonyl stretches is considered. The role of solvent in shifting the Amide I band (by 30 to 50 cm−1) is clearly evident. Similarly, the conformational dynamics contribute to the broadening of peaks in the spectrum. The inhomogeneous broadening in both the 1D and 2D spectra reflects the significant conformational diversity observed in the simulations. Through the computed 2D cross-peak spectra, we show how different pulse schemes can provide additional information on the coupled vibrations
Information Security as Strategic (In)effectivity
Security of information flow is commonly understood as preventing any
information leakage, regardless of how grave or harmless consequences the
leakage can have. In this work, we suggest that information security is not a
goal in itself, but rather a means of preventing potential attackers from
compromising the correct behavior of the system. To formalize this, we first
show how two information flows can be compared by looking at the adversary's
ability to harm the system. Then, we propose that the information flow in a
system is effectively information-secure if it does not allow for more harm
than its idealized variant based on the classical notion of noninterference
The advantages of sub-sampling and Inpainting for scanning transmission electron microscopy
Images and spectra obtained from aberration corrected scanning transmission electron microscopes (STEM) are now used routinely to quantify the morphology, structure, composition, chemistry, bonding, and optical/electronic properties of nanostructures, interfaces, and defects in many materials/biological systems. However, obtaining quantitative and reproducible atomic resolution observations from some experiments is actually harder with these ground-breaking instrumental capabilities, as the increase in beam current from using the correctors brings with it the potential for electron beam modification of the specimen during image acquisition. This beam effect is even more acute for in situ STEM observations, where the desired outcome being investigated is a result of a series of complicated transients, all of which can be modified in unknown ways by the electron beam. The aim in developing and applying new methods in STEM is, therefore, to focus on more efficient use of the dose that is supplied to the sample and to extract the most information from each image (or set of images). For STEM (and for that matter, all electron/ion/photon scanning systems), one way to achieve this is by sub-sampling the image and using Inpainting algorithms to reconstruct it. By separating final image quality from overall dose in this way and manipulating the dose distribution to be best for the stability of the sample, images can be acquired both faster and with less beam effects. In this paper, the methodology behind sub-sampling and Inpainting is described, and the potential for Inpainting to be applied to novel real time dynamic experiments will be discussed
Decoding the enigma of antiviral crisis: Does one target molecule regulate all?
Disease fatality associated with Ebola, SARS-CoV and dengue infections in humans is attributed to a cytokine storm that is triggered by excessive pro-inflammatory responses. Interleukin (IL)-6 acts as a mediator between pro- and anti-inflammatory reactivity by initiating trans- and classical-signaling, respectively. Hence, IL-6 is assumed to provide a target for a broad range of antiviral agents. Available immunosuppressive antivirals are directed to control an often exaggerated pro-inflammatory response that gives rise to complex clinical conditions such as lymphocytopenia. It is known that IL-6, via its soluble receptor (sIL-6R), initiates a pro-inflammatory response while an anti-inflammatory response is triggered by the membrane-bound IL-6 receptor (IL-6R). Future antivirals should thus aim to target the mechanism that regulates switching between IL-6 trans- and classical-signaling. In this review, we propose that the tumour necrosis factor-α converting enzyme ADAM-17 could be the master molecule involved in regulating IL-6 class switching and through this in controlling pro- and anti-inflammatory responses to viral antigenic stimuli. Therefore, ADAM-17 should be considered as a potential target molecule for novel antiviral drug discovery that would regulate host reactivity to infection and thereby limit or prevent fatal outcomes
Calculating metalation in cells reveals CobW acquires Co(II) for vitamin B12 biosynthesis while related proteins prefer Zn(II)
Protein metal-occupancy (metalation) in vivo has been elusive. To address this challenge, the available free energies of metals have recently been determined from the responses of metal sensors. Here, we use these free energy values to develop a metalation-calculator which accounts for inter-metal competition and changing metal-availabilities inside cells. We use the calculator to understand the function and mechanism of GTPase CobW, a predicted CoII-chaperone for vitamin B12. Upon binding nucleotide (GTP) and MgII, CobW assembles a high-affinity site that can obtain CoII or ZnII from the intracellular milieu. In idealised cells with sensors at the mid-points of their responses, competition within the cytosol enables CoII to outcompete ZnII for binding CobW. Thus, CoII is the cognate metal. However, after growth in different [CoII], CoII-occupancy ranges from 10 to 97% which matches CobW-dependent B12 synthesis. The calculator also reveals that related GTPases with comparable ZnII affinities to CobW, preferentially acquire ZnII due to their relatively weaker CoII affinities. The calculator is made available here for use with other proteins
Vigorous star formation hidden by dust in a galaxy at
Near-infrared surveys have revealed a substantial population of enigmatic
faint galaxies with extremely red optical-to-near-infrared colours and with a
sky surface density comparable to that of faint quasars. There are two
scenarios for these extreme colours: (i) these distant galaxies have formed
virtually all their stars at very high redshifts and, due to the absence of
recently formed stars, the colours are extremely red and (ii) these distant
galaxies contain large amounts of dust, severely reddening the rest-frame
UV--optical spectrum. HR10 () is considered the archetype of the
extremely red galaxies. Here we report the detection of the continuum emission
from HR10 at 850m and at 1250m, demonstrating that HR10 is a very
dusty galaxy undergoing a major episode of star formation. Our result provides
a clear example of a high-redshift galaxy where the star formation rate
inferred from the ultraviolet luminosity would be underestimated by a factor up
to 1000, and shows that great caution should be used to infer the global star
formation history of the Universe from optical observations only.Comment: 12 pages, 1 figure, Nature, in press (30 April 1998
- …