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The ability to compute from first principles the infrared spec-

trum of a protein in solution phase representing a biological

system would provide a useful connection to atomistic mod-

els of protein structure and dynamics. Indeed, such calcula-

tions are a vital complement to 2DIR experimental

measurements, allowing the observed signals to be inter-

preted in terms of detailed structural and dynamical informa-

tion. In this article, we have studied nine structurally and

spectroscopically well-characterized proteins, representing a

range of structural types. We have simulated the equilibrium

conformational dynamics in an explicit point charge water

model. Using the resulting trajectories based on MD simula-

tions, we have computed the one and two dimensional infra-

red spectra in the Amide I region, using an exciton approach,

in which a local mode basis of carbonyl stretches is consid-

ered. The role of solvent in shifting the Amide I band (by 30

to 50 cm21) is clearly evident. Similarly, the conformational

dynamics contribute to the broadening of peaks in the spec-

trum. The inhomogeneous broadening in both the 1D and 2D

spectra reflects the significant conformational diversity

observed in the simulations. Through the computed 2D cross-

peak spectra, we show how different pulse schemes can pro-

vide additional information on the coupled vibrations. VC 2016
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Introduction

Understanding the three-dimensional structure of a protein is

often a challenging task but is an undertaking that can yield

deep insights into biological functions, ranging from mem-

brane signaling to catalysis to charge transfer as well as

dynamic scaffolding, mechanical and electrical transduction.

Approaches such as X-ray crystallography and nuclear magnet-

ic resonance can provide atomistic detail, while optical spec-

troscopy in the ultra-violet and infrared (IR) regions can

provide useful qualitative information. Efforts to understand

and interpret the characteristic spectroscopic features of pro-

teins have been ongoing for many decades. In the IR, the

Amide I region lies between 1600 and 1700 cm21,[1–3] and is

sensitive to the backbone conformation of a protein. This

region has been extensively used to probe protein structure

and dynamics, as it can provide useful information with

respect to protein folding, misfolding, and unfolding.[3–6] How-

ever, the spectra often show convoluted and overlapping

bands that can be challenging to decipher. There are distinc-

tive spectral characteristics arising from a-helices, b-sheets,

and random coil structures.[7–12] a-helices exhibit a band

between 1650 and 1658 cm21.[3] Bands near 1663 cm21 have

been associated with 310 helices,[3,7,8] while b-sheets exhibit

bands between 1620 and 1640 cm21 as well as 1690 and

1695 cm21.[3–7]

The characteristic vibrations of polypeptides in general con-

sist of nine types: Amide A, B, and I–VII modes. The Amide I

and II are interesting from a structural perspective as they give

rise to two broad bands associated with the protein backbone.

The former is the primary focus of this article. The Amide I

mode is characterized by the C 5 O stretch which accounts for

about 80% of the vibration, and the wagging and bending of

the NAH bond which accounts for the remaining 20%.

Torii and Tasumi[13] used ab initio calculations to investigate

the A (singly degenerate) and E (doubly degenerate) compo-

nents of the Amide I bands in the Raman and IR spectra of

peptides. For helical conformations, the A component of the

Raman band is intense and corresponds to the carbonyl

groups vibrating in-phase; the E component of the IR band is

less intense whereby an out-of-phase vibrational combination

leads to a net transition dipole moment perpendicular to the

helix axis. For b-sheets, the splitting of the characteristic

intense peak at �1620 cm21 and the weaker peak at

�1690 cm21 is directly proportional to the number of strands

(up to a certain amount) in the sheet.[14] For larger b-sheets,

the absorption becomes independent of the size of the sheet.
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In the past 20 years or so, sophisticated experimental tech-

niques have been developed to allow collection of IR spectra

in two dimensions using both time (photon echo[15]) and fre-

quency domain (double resonance[16]), methodologies.[16–23]

Irrespective of the experimental approach, a 2D-IR signal arises

from a sequence of three laser-sample interactions and the

resulting spectrum is a correlation map of excitation and

detection frequencies. This leads to the spreading of the

molecular response over a second frequency axis, allowing res-

olution of features that are obscured by overlapping peaks in

a traditional IR spectrum.

In a 2D-IR spectrum, diagonal peaks represent signals featur-

ing excitation (pump) and detection (probe) at the same fre-

quency and these are analogous to the features observed in a

1D-IR spectrum. Additional information arises from the 2D line-

shape of these features, which reflects the temporal evolution

of the local environment of a given oscillator. Off-diagonal

peaks arise when the excitation and detection frequencies dif-

fer and these provide insights into vibrational couplings, ener-

gy transfer or chemical exchange processes. The shape of

these off-diagonal peaks can also be influenced by coupling

between vibrational modes.

2D-IR has been increasingly applied to protein samples and

a wide range of applications have been reported. These have

included the spectroscopy and dynamics of disordered poly-

peptides,[24–26] picosecond protein conformational dynam-

ics,[27–30] amyloid fibril formation[31–34] and the structure of

transmembrane proteins.[35–37] These have been extensively

reviewed elsewhere.[38–41]

Fully ab initio or density functional theory (DFT) calculations

of the vibrational frequencies of large polypeptides are cur-

rently prohibitively demanding of computational resources.

Thus, more approximate approaches are adopted. Krimm and

Bandekar[2,3] recognized that the nature of the Amide I band

is influenced by the interactions of carbonyl vibrations via

electrostatics and they constructed the Transition Dipole Cou-

pling (TDC) model, which captures an essential part of the

inter-peptide couplings. The model has formed the basis for

interpreting the Amide I bands of polypeptides in linear

absorption spectra[42] and has been extended to the analysis

of 2D-IR spectra. Hamm and Woutersen[43] suggested a Transi-

tion Charge Coupling model that included higher order multi-

pole contributions, and further improved on the TDC results.

Although the model was, in general, consistent with DFT stud-

ies, it could not describe through bond coupling.

The influence of the molecular environment on individual

local modes has attracted significant attention.[44–54] Ham and

Cho[47] provided a framework for considering the influence of

the electrostatic environment, with the development of cou-

pling and frequency maps derived from ab initio calculations

on model peptides such as N-methylacetamide (NMA) and

dipeptides. Both the coupling and frequency shift maps are

dependent on the main chain dihedral angle of the dipeptide.

These frequency maps can include the effects of water sur-

rounding the chromophores as well as other components such

as ions or lipids. Many of these maps have been developed

over the past decade, some derived from ab initio

calculations[50,55–59] and some, such as Skinner’s,[60] derived

empirically. These maps have been widely adopted to calculate

short-range interactions, and are used in conjunction with the

TDC model for the long-range interactions.

Early[20,61] calculations of Amide I bands used models based

on simple geometric properties relating to the nature of

hydrogen bonding. Karjalainen et al.[54] studied a set of 44

proteins, calculating Amide I spectra by empirically optimizing

parameters in several terms accounting for the effects of sol-

vent, the local environment, and inter-peptide hydrogen bond-

ing. Their work showed how the shift in frequency is strongly

dependent on the number of hydrogen bonds to the amide

oxygen atom or the amide NH group. This empirical approach

contrasts with the more sophisticated models based on differ-

ent electrostatic properties such as the electric field, electric

field gradient, and the electrostatic potential.

Ganim and Tokmakoff[62] examined the influence of confor-

mational fluctuations on computed Amide I bands in 1D and

2D IR spectra for three small proteins using molecular dynam-

ics (MD) simulations. The fluctuations of both the solvent and

solute influenced the calculated IR lineshapes. They reported

that the computed lineshapes were broader than the experi-

ment. Choi et al.[63] presented computational (semi-empirical

and MD) simulations and theoretically predicted the IR, 2D IR,

electronic and vibrational dichroism spectra of ubiquitin. In

their simulations, the backbone atoms were constrained to

keep the conformations close to those obtained from semi-

empirical geometry optimizations. They found that hydration

had a significant effect on the computed IR spectra, contribut-

ing to the computed red shift of the Amide I bond of differ-

ent structural components. Recently, Jansen and coworkers

have benchmarked several approaches to computing the

Amide I band and 2D IR of proteins from MD simula-

tions.[64,65] Up to four proteins were studied using several

combinations of force fields for the MD simulations, electro-

static mappings and couplings. Skinner’s empirical frequency

map[60] with the TDC model was reported to do well in con-

junction with the OPLS-AA force field. However, it was con-

cluded that there is still considerable scope for understanding

and improving modeling approaches. Our study provides

some additional complementary insight into the current state

of the art.

We develop further insight into the relationship between

protein conformation and spectra. Using the electrostatic

potential to compute the coupling and frequency maps, we

consider a range of well-studied, typical proteins and investi-

gate how the environment can affect protein IR spectra in the

Amide I region. We model the shift of spectral peaks resulting

from the fluctuating surrounding environment with the aid of

MD simulations. To investigate the effect of solvent and con-

formational dynamics on the Amide I spectra, we use a test-

bed of eight globular proteins[42] plus ubiquitin.[63] The former

were previously used[42] to study the effect that irregularities

and distortions in structural components had on the Amide I

bands. Following Grechko and Zanni,[66] we investigate the

influence of various structural and dynamical aspects on the

location and intensities of bands of 2D signals.
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Methodology

Exciton Hamiltonian

Exciton theory[67] provides a framework for considering a large

polymeric system. The vibrational exciton one-quantum Hamil-

tonian is constructed based on a system of coupled local

modes:

Ĥ5H01F2E0 (1)

in which Ĥ is the Hamiltonian, H0 is the Hamiltonian of N non-

interacting peptide groups, F is the inter-peptide potential,

and E0 is the ground state energy. Hence, the Hamiltonian

matrix consists of three types of element: the diagonal ele-

ments which correspond to the harmonic (central) frequency,

the off-diagonal nearest neighbor coupling (NNC) constants,

and the other off-diagonal elements which describe the

through-space interaction between local mode vibrations. The

TDC approximation[2,3] calculates the latter elements as:

fij5
0:1

e
3
~l i:~l j23 ~l i:~g ij

� �
: ~l j:~g j

� �
r3

ij

(2)

where fij is the TDC, e is the dielectric constant, ~l i is the tran-

sition dipole moment for the Amide I mode located on pep-

tide i. ~l j is the transition dipole moment for peptide j, rij is

the separation of the dipoles between peptides i and j, gij is

the vector defining the separation between the ith and jth

peptide.

Following Torii and Tasumi,[42] the TDC was computed using

a transition dipole (Fig. 1) placed 0.868 Å away from the amide

carbonyl bond, and oriented 208 toward the amide nitrogen

along the OCN plane. Its magnitude was 3.7 D Å21 amu21/2.

The nearest neighbor off-diagonal Hamiltonian matrix ele-

ments are assigned from a NNC look-up table or coupling

map[57] that consists of force constants calculated ab initio for

all combinations of main-chain dihedral angles (in increments

of 308) for a di-peptide.

We now turn to the calculation (using a modified version of

the dichrocalc software[68]) of the diagonal elements of the

Hamiltonian and the change in frequency for each local mode

due to the surrounding electrostatic environment. The electro-

static potential at site i is computed from a set of atom-

centered partial charges[47]:

/i5
XN

j51

cj

4pe0ri;j
(3)

where j is the index that runs over all N partial atomic charges,

cj, in the system. The atoms in the peptide group where the

potential is calculated are excluded from the summation. The

atomic partial charges for backbone atoms and side chains

groups were taken from CHARMM36 force field.[69] Explicit sol-

vent (e.g., water) and hetero-atoms are thus readily (and have

been) included in the calculations. The interplay between the

force field used to sample conformational dynamics and mod-

els used to construct the exciton Hamiltonian is complex.[64,65]

Previous studies have considered CHARMM22[70,71] amongst

other force fields. In our work, we use the CHARMM36 force

field, where there is evidence[69,72] that changes in the internal

parameters describing the peptide backbone give a better rep-

resentation of the structure and dynamics than CHARMM22 as

assessed through validation against various experimental (in

many cases NMR) observables.

The electrostatic potential is used in conjunction with a

combination of so called linear expansion coefficients to give

the shifted frequency:

xk5x01
X4

j51

lj/k;j (4)

where xk is the shifted frequency of peptide k, x0 is the cen-

tral frequency (discussed later). Index j runs across the four

atoms at which there are partial charges (Table 1) in each pep-

tide k. The linear expansion coefficients lj (Table 1) are derived

from the following equation:

lj5
gI

4pcM2
I x0

I

� �3

@cj

@Qj

� �eff

0

(5)

where gI is the cubic anharmonic coefficient for the Amide I

mode, c is the speed of light, MI is the reduced mass, x0
I is

the angular frequency, and
@cj

@Qj

� �eff

0
is the effective transition

charge in units of e Å21.

Figure 1. The location and orientation of the transition dipole. [Color figure

can be viewed at wileyonlinelibrary.com]

Table 1. The backbone partial charges from the CHARMM force field,[69]

assigned to each of the atoms in a peptide unit.

Atom Partial charge (e) lj (e)

C 0.51 0.00160

O 20.51 20.00554

N 20.47 0.00479

H 0.31 20.00086

Their respective linear expansion coefficients from the Cho[47] map

were used to calculate the shift in central frequency.
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The central frequency is usually chosen between 1650

and 1710 cm21.[16,73,74] We adopted a value of 1680 cm21,

which gives computed spectra consistent with the range

observed experimentally for the Amide I region. The differ-

ence between this value and the gas phase value for NMA

of 1717 cm21 suggests that the electrostatic effect (as mod-

eled here) does not fully account for the solvent-induced

shift. For proline residues, which do not have an amide

hydrogen atom the frequency shift was not explicitly calcu-

lated; instead we simply used a fixed frequency of

1653 cm21.[75] Side chains that are known to absorb in the

Amide I region such as those present in glutamine and

asparagine have not been considered as chromophore

groups; they are treated as side chains contributing to the

electrostatic potential instead. The 1D absorption line spec-

tra were convoluted with a Gaussian full width at half maxi-

mum bandwidth of 4 cm21. This convolution accounts for

broadening due to mechanisms not captured explicitly by

the MD simulation. We illustrate how isotopic labeling of

the carbonyl groups in different secondary structure ele-

ments in ubiquitin could be used to deconvolute the dis-

tinct contributions of helix and sheet to the 2D signal. The

shift due to 13C18O isotope labeling lies between 60 and

75 cm21.[50,76–78] We adopted a value of 65 cm21 for resi-

dues belonging to secondary structure types of interest. To

calculate the 2D spectra, the two-quantum Hamiltonian is

constructed from the one-quantum Hamiltonian matrix ele-

ments as follows[62]:

HII
m;n m;n5Hm;m1Hn;n2dm;nD (6)

HII

mm;nk

mm6¼nk; m 6¼k

5
ffiffiffi
2
p

Hm;kdm;n1Hm;ndm;k

� �
(7)

HII

mn; nk

m6¼k

5Hm;k dm;n1dn;k

� �
(8)

where dm,n is Kronecker’s delta, HII is the two-quantum Hamil-

tonian, H is the one-quantum Hamiltonian with site indices m,

n, and k. D is the difference between the fundamental and

overtone absorption frequencies, also known as the anharmo-

nicity. The Hamiltonian operator for singly and doubly excited

states can be expressed as[79]:

Ĥ5
XN

n51

enjnihnj1
XN

m;n51

Jmnjmihnj1
XN

m;n51

em1en2Ddmnð Þjmnihmnj

1
XN

m;n51

XN

j;k51

m;n6¼j;k

Jmn;jkjmnihjkj

(9)

where J is the coupling constant between the singly excited

jmi,jni states or doubly excited jmni and hjkj states. e is the site

energy of the relevant state. N is the number of sites. The local

transition dipoles ~l, are likewise constructed from the one-

quantum transition dipole moments to produce two-quantum

transition dipole moments using the following expression:

~lm;n5
ffiffiffi
2
p
~lmdm;n1~ln 12dm;n

� �
(10)

with m and n again being the site indices. The two-exciton

Hamiltonian matrix is diagonalized to produce a set of N21N
2

energies that are used to compute the non-linear response.

For a protein of N oscillators, there are N2 two-quantum states

and the number of interactions (or matrix elements in the

Hamiltonian) grows as N4, which makes the calculations signifi-

cantly more demanding than for 1D-IR.

The third order non-linear polarization P(3) is a convolu-

tion[80–84] of the third order non-linear response functions R(3)

and the three electric fields En:

P3
tð Þ5

ð1
0

dt3

ð1
0

dt2

ð1
0

dt1E3 t2t3ð ÞE2 t2t32t2ð Þ

E1 t2t32t22t1ð ÞR 3ð Þ t3; t2; t1ð Þ (11)

where tn refers to the time intervals between laser pulses. R(3)

describes the macroscopic behavior of the system under the

effect of the optical fields between the time intervals.

In 2D photon echo experiments, the diagonal peaks appear

as positive signals while they appear as negative bleaches in

double resonance experiments. The off-diagonal contributions

to the 2D signal; however are both positive and negative. We

computed the two-quantum Hamiltonian using a modified

version of the Zanni and Hamm code[80] reading into the pep-

tide.c code the one-quantum exciton Hamiltonians con-

structed for each snapshot, and uses a fixed anharmonicity of

Table 2. Proteins studied with their PDB codes.

Protein PDB Code Class % b-strands % b-turns % a-helix 310 - helices % Coil No. solvent molecules

a-Lactalbumin 1ALC a 1 b 7 30 30 14 19 8053

Carbonmonoxy-Myoglobin 1MBC a 0 7 74 4 15 6860

Concanavalin A 3CNA b 42 44 0 0 14 11227

Egg White Lysozyme 2LYM a 1 b 6 40 30 10 14 8412

b-Trypsinogen 2PTN a 1 b 32 44 8 3 13 7641

Carboxypeptidase A 5CPA a 1 b 16 30 35 2 17 10862

Ribonuclease A 7RSA a 1 b 27 24 18 3 28 6379

Ubiquitin 1UBQ a 1 b 32 28 16 8 16 5978

Flavodoxin 5NLL a 1 b 21 19 37 4 19 6782

Their secondary structure content computed using PROMOTIF.[92] The number of water molecules used in the MD simulations is provided.
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16 cm21. The Hamiltonian is diagonalized and the corre-

sponding unitary transformation is used to transform the tran-

sition dipole matrix. The dipole approximation is used,

whereby cross-excitations are not allowed. The 2D signal is

evaluated as the sum of the rephasing and nonrephasing

components. The computed spectra shown in this article are

purely in the frequency domain, and the diagonal and off-

diagonal contributions to the 2D signal shown here are posi-

tive and negative signals respectively (as in photon echo

experiments). Thus the positive signal represents the ground

state depletion (bleach) and stimulated emission (v50! 1),

while the negative signal corresponds to excited state emis-

sion (v51! 2). Polarization conditions have been examined

previously by Hochstrasser.[82] The peak intensities are

collected by ensemble averaging the lab frame dipole

moment components to account for the orientation of resi-

dues with respect to the laser polarization. Our 2D signal is

computed using the ZZZZ polarization condition:

hZaZbZcZdi5
1

15
hcos habcos hcdi1hcos haccos hbdi1 hcos hadcos hbci
� �

(12)

where hmn is the angle between transition dipoles m and n. In

a later section, we show the enhancement of cross-peaks by

subtracting two computed spectra: one using the ZZZZ condi-

tion and the other using the ZXXZ pulse condition.[63,80–83]

Similar to eq. (12), the latter pulse condition can be expressed

as:

Figure 2. Amide I IR spectra of the nine proteins. The solid black line represents the experimental spectra from various sources cited by Torii and Tasumi,

J. Chem. Phys., 1992, 96, 3379, reproduced by permission,[42] who reported that the spectra were “weakly deconvoluted”. The dashed black represents the

experimental (recorded for 3% protein solution in H2O) transmission IR spectra taken from Karjalainen et al., J. Phys. Chem. B, 2012, 116, 4831, reproduced

by permission.[54] The dashed blue represents the average computed spectra including solvent, and the dotted red line represents the average computed

spectra excluding solvent. See Table 2 for the names of the proteins. [Color figure can be viewed at wileyonlinelibrary.com]
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hZaXbXcZdi52
1

30
hcos habcos hcdi24hcos haccos hbdi
�

1 hcos hadcos hbciÞ (13)

The enhanced signal is computed using:

Sigen5hZZZZi23hZXXZi (14)

Molecular dynamics simulations

Using the NAMD 2.9 molecular dynamics package,[84] we per-

formed MD simulations on ubiquitin and the eight proteins

studied by Torii and Tasumi.[42] The structures were taken from

the Protein Data Bank, and the N- and C-termini were capped

to give (NH1
3 -CaH2) and (-CH2-CO2

2 ), respectively. For the cases

of a-lactalbumin, concanavalin A and myoglobin, the apo

forms of the proteins were used. Neutralization was achieved

by adding 9 Na1 ions for a-lactalbumin, 9 K1 for concanavalin

A, 16 K1 for flavodoxin, 2 Cl- for myoglobin, 5 Cl- for ribonucle-

ase A, 6 Cl- for trypsin, and 8 Cl- for lysozyme. The simulations

included explicit water to model the influence of conforma-

tional dynamics on line broadening, and to investigate the

effect of solvation on the Amide I band. Each protein was sol-

vated in a hexagonal prism of TIP3P water molecules,[85] and

periodic boundary conditions were applied. To account for

long-range interactions, the Particle Mesh Ewald method[86]

was used, and the Lennard-Jones cutoff was 12 Å. Energy min-

imization was performed for each protein for 30,000 cycles.

Thereafter an equilibration process with an integration time-

step of 2 fs ran for 0.5 ns, during which all covalent bonds

involving hydrogen were constrained using the SHAKE algo-

rithm.[87] Experiments are usually performed in deuterated

water. The water molecules in our simulations have rigid OAH

bonds. Thus, the TIP3P model, captures hydrogen bonding

and electrostatic effects but, neither the influence of the

vibrations of water nor the effect of the deuteration on the

conformational dynamics of the protein are considered.

Production dynamics were performed for a period of 2 ns in

the NPT ensemble using Langevin dynamics and a damping

coefficient of 5 ps21. The Nos�e–Hoover[88–90] and Langevin pis-

ton[91] periods were set to 100 fs and their time-decay period

was set to 50 fs to keep the temperature constant at 300 K,

while maintaining pressure at 1 atm. Snapshots were sampled

uniformly every picosecond. Trajectory files with and without

solvent were saved separately to investigate the effect of sol-

vent on the computed spectra. The 2 ns trajectories are short,

but the main purpose is to provide a sample of configurations

close to the experimental structures. Our unconstrained simu-

lations will potentially explore a broader and more physical

range of equilibrium conformations than the constrained simu-

lations of Choi et al.[63]

Results and Discussion

Experimental transmission IR spectra were taken from the litera-

ture[42,63] rescaled such that the highest intensity peaks match

the computed spectra, and plotted against the computed spec-

tra of the nine proteins (Fig. 2). The experimental conditions

used for recording the spectra cited by Torii and Tasumi[42] were

as follows: a-lactalbumin and lysozyme were recorded using a

3.5% protein solution in D2O; myoglobin and trypsin using a 5%

protein solution in H2O, ribonuclease A using a 10% protein

solution in H2O, while spectra for carboxypeptidase A, conca-

navalin A, and flavadoxin spectra were all recorded using a 5%

protein solution in D2O. We present our computed spectra with-

out any post-processing to enhance the fine structure. The over-

all band shape of each of the computed spectra for solvated

proteins agrees with the experiment (Fig. 2).

The spectra computed neglecting the solvent exhibit an

Amide I band that is broader than the experiment, extending

beyond 1700 cm21 to around 1750 cm21. We believe that

neglecting solvent in the calculations means that the surface

Figure 3. Computed spectra for a) a-helical protein carbonmonoxy-myoglobin (1MBC) and b) b-sheet protein concanavalin A (3CNA), for the snapshots

with spectra most similar (dashed blue), and least similar (dotted red) to the computed average spectra (solid black). The thin dotted lines (upper and low-

er) represent the mean average 6 standard deviation, respectively. [Color figure can be viewed at wileyonlinelibrary.com]
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residues have an environment that is artefactually more differ-

ent from the buried residues compared to the situation for a

solvated system. To investigate the influence of conformational

diversity on the computed spectra, we calculated the standard

deviation of the computed intensity at each wavenumber over

all snapshots (Fig. 3). We also identified the individual snap-

shots giving rise to the computed spectra that were least and

most similar to the mean computed spectra over the 2 ns sim-

ulation period (Fig. 3).

The spectra from individual snapshots that are most dissimi-

lar to the ensemble show some of the most intense features.

By examining these conformations, we can characterize the

extent of (de)localization of the vibrations associated with the

most intense features. The squares of the eigenvector coeffi-

cients reflect the contributions of the local modes to the tran-

sition.[93,94] For the most dissimilar snapshot of concanavalin A,

only two coefficients had a squared magnitude greater than

0.25, that is, none of the transitions was particularly localized.

Of particular note was a pattern observed near the end of the

2 ns trajectory. The intense peak was located between 1622

and 1626 cm21. In this spectral region of the simulation, the

vibration was delocalized across different residues in parallel

strands. This is consistent with the strength of the through-

space coupling constants between these residues. Figure 4

shows the location of the vibration in the context of the pro-

tein structure. The coupling between the residues fluctuates

over the simulation, but certain conformations (Fig. 4) exhib-

ited strong inter-strand coupling between residues perpendic-

ular to the strand orientation of the sheet, which is consistent

with the findings of Woys et al.[95]

Experimentally,[96,97] it is possible using expressed protein

ligation and native chemical ligation to isotope label distinct

regions in proteins, for example, specific elements of secondary

structure. The computational analogue is readily performed and

can help us to understand the various contributions to the spec-

tra and deconvolute the overlapping bands of the 1D signal. We

illustrate this for the simulations of solvated ubiquitin. The result

of isotope labeling of either residues in a-helices or in b-sheets

(Fig. 5) shows a shift in peaks accordingly. The residues belong-

ing to a-helices show a contribution to the 1D signal in the form

of a single broad peak at 1580 cm21, while the contribution

from b-sheet residues shows two peaks, one more intense than

the other. Splitting the signal by isotope labeling has an effect

on the overall band maxima, which will be discussed later.

Karjalainen et al.[54] assumed the shift in intrinsic frequency

is related to the presence or absence of a hydrogen bond

between a carbonyl oxygen of one amide group and an amide

hydrogen of another. We investigated the relationship

between shift in intrinsic frequency and the presence of

hydrogen bonds to solvent. The relationship is evident, but

appears to be a weak one (Fig. 6). For example, in the case of

the a-helical carbonmonoxy-myoglobin, the number of hydro-

gen bonds to solvent molecules shows a modest influence on

the extent of the negative shift from the central frequency, as

is expected. Concanavalin A, a b-sheet protein, shows a weaker

but similar trend. Our modeling of the influence of hydrogen

bonds is through the electrostatic potential, which is a non-

local approach. It may be that a more explicit treatment of

hydrogen bonding would identify a stronger relationship

between hydrogen bonding and the frequency shift.

2D IR spectra

Conformational dynamics of the protein and solvent are

reflected in the 2D lineshapes. We have computed the absorp-

tive 2D IR spectra for ubiquitin, concanavalin A, carbonmonoxy-

myoglobin, lysozyme, ribonuclease A, and a-lactalbumin based

on the conformations sampled from the MD trajectories. We

Figure 4. Concanavalin A in one of the snapshots of interest. The strongly coupled residues are depicted with an atomic representation. The color bar scale

represents the eigenvector coefficients: red indicates a negative coefficient, blue a positive one and the atoms are colored accordingly. [Color figure can

be viewed at wileyonlinelibrary.com]
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chose these proteins as a benchmark due to their different

sizes and mixed structural compositions. For ubiquitin, we

investigated the convergence of the computed spectra with

the number of conformations sampled from the MD trajectory.

Spectra computed with 200 snapshots sampled uniformly

across the trajectory gave a computed spectrum very similar to

that computed with 2000. So the 2D-spectra for the larger pro-

teins were computed with 200 snapshots to limit the computa-

tional cost. Thus inhomogeneous broadening in the calculated

2D spectra is a result of the structural changes depicted by the

snapshots, and homogeneous broadening was modeled by

convoluting with a 2D Lorentzian bandwidth of 10 cm21. The

vibrational motional narrowing effect, whereby the line width

may be overestimated by static structural snapshots,[98–100]

may influence the computed spectrum. Whilst this is a signifi-

cant effect for NMA in solution,[49] it may be less important

for polypeptides, because of the spread of the multiple amide

modes of the protein.[101] Different features can be seen in

the spectra (Fig. 7). The intense peaks which are plotted with

pump frequency, x1, on the horizontal axis and the probe fre-

quency, x3, on the vertical axis as in Ref. 102 correspond to

contributions from the a-helices [x1, x3] 5 [1635, 1635] cm21

in the case of ubiquitin. For concanavalin A, the anti-parallel

sheet contribution can be seen as a weak peak appearing at

[1660, 1660] cm21. Two intense signals are also seen between

[1625, 1625] cm21, both associated with out-of-phase oscilla-

tions of carbonyls of the same b-strand.[74] A broad peak

stretches along the diagonal from [1620, 1620] cm21 to

[1670, 1670] cm21. This agrees with experiment[102] and is

associated with random coils in concanavalin A. Random coils

probably contribute to the weaker signal at [1660, 1660]

cm21.

In all spectra shown in Figure 7, the elongation along the

diagonal stretches from 1620 to 1670 cm21 and shows that

the solvent-exposed residues experience a fluctuating

electrostatic environment, due to conformational disorder and

fluctuations of the solvent. The spectrum of carbonmonoxy-

myoglobin is dominated by contributions from a-helices. A

broad and intense signal stretches from [1640, 1640] to [1655,

1655] cm21. This is also seen for a-lactalbumin [1630, 1630] to

[1660, 1660] cm21. Table 3 summarizes the location of the

peak centers in the computed and the experimental spectra of

Figure 7. Overall, our computed spectra agree well with the

experimental spectra. The level of agreement is comparable

with recently reported calculations[64,65] using different force

fields and modeling protocols.

More detailed information can be accessed by enhancing

the cross-peaks (Fig. 8). For example, coupled vibrations of dif-

ferent transitions are now revealed compared to the ZZZZ

spectra. The cross-polarization hZZZZi23hZXXZi signal sup-

presses the diagonals to some extent and enhances other fea-

tures of the 2D spectra. The off-diagonal peaks are better

resolved than their counterparts in Figure 7, allowing the

nature of the coupling between different local modes to be

explored further. Much weaker peaks appear on the diagonal

in Figure 8 compared to the intense diagonal peaks in Figure

7. These weak diagonal peaks (Fig. 8) are now comparable in

intensity with the off-diagonal cross-peaks, and these features

merge somewhat to give a broad peak which extends parallel

to the x1 axis, as can be seen for example in the case of con-

canavalin A: peak I, Figure 8. The splitting between the posi-

tive and the negative signals of a cross-peak is a measurement

of the coupling strength and is due to the off-diagonal anhar-

monicity. For example in concanavalin A, peak I indicates there

is a strong coupling between structural elements, while in the

rest of the proteins the analogous peak indicates weaker cou-

pling. Table 4 summarizes the cross-peaks highlighted in Fig-

ure 8.

In the cross-polarization spectra of a-lactalbumin and myo-

globin (Fig. 8), there are signs of contribution from coupled

Figure 5. Computed 1D spectra of ubiquitin (1UBQ) with 13C18O isotope labeling of the a-helix residues a), and b-sheet residues b). The solid black line in

both panels represents the unlabeled computed spectrum, while the dashed blue line represents the isotope labeling cases. [Color figure can be viewed

at wileyonlinelibrary.com]
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unstructured coils. Unstructured coils appear as broad feature-

less peaks at [x1, x3] 5 1650 or 1660 cm21,[79] and the cross-

polarization spectra reveal broad peaks stretching from

1660 cm21 toward 1680 cm21 due to b-strands coupled with

unstructured coils (in the case of a-lactalbumin: peak IV), and

coupled unstructured coils with b -turns (in the case of myo-

globin: peak III). The shape of the two cross peaks is different

and the finding agrees with a previous study[103] to suppress

random coil features.

Cross-peaks usually come in pairs, but when one half of

the doublet is more intense (as is the case in peak IV for

lactalbumin and myoglobin), it generally means that the off-

diagonal anharmonicity is weak between the two local

sites.[80] The splitting between the diagonal and off-diagonal

peaks is underestimated in Figure 7, which may suggest that

the value of the anharmonicity used in the calculations

should be greater. Choi et al.[63] and Chung et al.[104] previ-

ously investigated ubiquitin in two separate studies. Their

spectra exhibited a Z-shape, due to the contribution from

anti-parallel b-sheet strands. We find a similar Z-shape in

both our ubiquitin and concanavalin A crossed-polarization

spectra (Fig. 8).

The crossed-polarization spectroscopy is clearly a powerful,

experimentally realizable approach, which provides an addi-

tional insight into the origins of the 2D signal. Some of these

origins can also be explored using different computational

strategies. We investigate the contributions to the 2D signal

by isotope labeling the a-helices and b-strand secondary struc-

tures of ubiquitin. Figure 9 shows the two cases when either

the helices or the sheets are labeled.

Figure 6. Histograms for carbonmonoxy-myoglobin (1MBC) and concanavalin A (3CNA), depicting the relationship between the number of hydrogen bonds

to solvent and the shift in intrinsic frequency due to solvent [i.e., eq. (3) evaluated considering just the water molecules as the environment]. The blue line

represents the case of no hydrogen bonding occurring between the carbonyl oxygen and solvent molecules, the red represents the case where there is

one hydrogen bond, and green represents the case where there are two. The histograms were computed using 10 snapshots, evenly distributed across

the first nanosecond of the MD simulation. [Color figure can be viewed at wileyonlinelibrary.com]
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Both isotope labeled components have been shifted to

�1570 cm21 and are consistent with the computed 1D spectra

(Fig. 5). The diagonal peak intensities for the labeled a-helices

are clearly much weaker than those for the rest of the protein.

This is more evident in the 2D spectra as the signal is

proportional to the fourth power of the transition dipole

moment, whereas in the 1D spectra, the intensity depends on

the square of the transition dipole moment. The cross-peak at

� [1660, 1560] cm21 in Figure 9b indicates coupling between

b-sheet and random coil components. The absence of an anal-

ogous cross-peak in Figure 9a indicates there is little or no cou-

pling between b-sheet and a-helices. We have computed the

2D spectra of the a-helices and b-sheets separately (Fig. 10).

There are 12 residues in a-helices and 26 residues in b-

strands. Two Hamiltonians were constructed in which the size

of the one-quantum Hamiltonian was 12 3 12 in the first case

and 26 3 26 in the second, with all elements in the environ-

ment: main chain, side chains, and solvent molecules contrib-

uting to the electrostatic potential and shift in frequency.

Figure 10 shows the contributions to the signal from both a-

helices and b-strands. The b-sheet spectrum is about four

times more intense than the a-helices spectrum consistent

with the 2:1 ratio observed for the 1D spectrum. The contribu-

tion from the a-helices is a diagonal elongated peak with its

center at �[1640, 1640] cm21 while the b-strands contribute

three peaks: two intense ones at �[1625,1625] and �[1638,

1638] cm21 and a weak one at �[1660, 1660] cm21 indicating

coupled local modes. There is also a weak cross-peak at [1680,

Figure 7. Experimental[102] and computed 2D absorptive spectra using the ZZZZ scheme for: a-lactalbumin (1ALC), carbonmonoxy-myoglobin (1MBC), ubiq-

uitin (1UBQ), concanavalin A (3CNA), lysozyme (2LYM), and ribonuclease A (7RSA). Time delay (t2) in both the experimental and computed spectra was

zero. The contours for the computed spectra are plotted with a 10% intensity of the maximum amplitude with 20 uniformly spread contours from the min-

imum to the maximum intensity. [Color figure can be viewed at wileyonlinelibrary.com]

Table 3. Locations of diagonal and off-diagonal peaks in the computed

and experimental[102] 2D-IR spectra.

Diagonal peak locations (x1 5 x3)/cm21

Protein Experiment Computed

1ALC 1645 1650

1MBC 1650 1647

1UBQ 1640 1635

2LYM 1640 1635

7RSA 1640 1640

3CNA 1620 1625

Off-diagonal peak locations (x1, x3)/cm21

Protein Experiment Computed

1ALC (1640,1610) (1640,1630)

1MBC (1640,1610) (1640,1635)

1UBQ (1640,1610) (1630,1625)

2LYM (1640,1620) (1630,1620)

7RSA (1640,1620) (1620,1620)

3CNA (1620,1600) (1625,1620)
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1620] cm21 (Peak I). The presence of Peak I in Figures 10b and

Peaks I and II Figure 9a is further indication of the coupling

between b-secondary structure components.

Transition dipole strengths

Non-linear spectroscopies are more sensitive to transition

dipole strengths than linear spectroscopies. The 2D intensities

scale as j~lj4 compared to 1D intensities that scale as j~lj2.

Grechko and Zanni[66] studied the 1D and 2D IR of a model a-

helical system and concluded that the transition dipole

strength of the random coil state is 0.12 D2, and that a greater

magnitude indicates a more ordered system with vibrational

excitonic states forming associated with secondary structure.

Here, we extend that consideration to six of the proteins,

extracting the two-quantum transition dipole moments that

contribute to the 2D diagonal signal. In Table 5, we compare

the per residue contribution to the 2D intensities, j~lj4total
residue

for

the aforementioned proteins. The absolute value of the transi-

tion dipole, j~lj4total was computed as a sum over all transition

dipole moments. One might anticipate that more ordered

structures such as concanavalin A should give more delocal-

ized excitons, which should be manifested in more intense

bands.

The per residue contribution, j~lj2total
residue

which is computed

here by taking the square root of j~lj4total
residue

, confirms delocal-

ized excitonic vibrations as expected from ordered

Figure 8. Computed <ZZZZ>23< ZXXZ> cross-peak 2D IR absorptive spectra computed for a-lactalbumin (1ALC), myoglobin (1MBC), ubiquitin (1UBQ),

and concanavalin A (3CNA). Cross-peaks are highlighted with white dotted squares. The contours are plotted with a 10% intensity of the maximum ampli-

tude with 20 uniformly spread contours from the minimum to the maximum intensity. [Color figure can be viewed at wileyonlinelibrary.com]

Table 4. The cross-peaks in the cross-polarization 2D-IR spectra (Fig. 8)

for a-lactalbumin (1ALC), carbonmonoxy-myoglobin (1MBC), ubiquitin

(1UBQ) and concanavalin A (3CNA).

Protein Peak (strength)

Structural components

involved

1ALC I (w) II (w) III (w) IV (w) b a 1 b b b 1 coil

1MBC I (w) II (w) III (w) a a a 1 coil

1UBQ I (w) II (w) a b
3CNA I (s) II (w) b b

The coupling is characterized as either strong (s) or weak (w).
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structured systems, and all the values fall above the thresh-

old observed by Grechko and Zanni.[66] However, there is

not an obvious relationship between the proportion of coil

structure in the protein and the intensity of the 2D diagonal

signal. This discrepancy might be explained by the fact coil

structures in folded proteins do not necessarily have the

same properties as random coils in unfolded peptides such

as the ones studied by Grechko and Zanni.[66]

Figure 9. Computed 2D absorptive spectra using the ZZZZ scheme of cases where the a- helices a) and b-strands b) of ubiquitin (1UBQ) are isotope

labeled. The contours are plotted with a 10% intensity of the maximum amplitude and 20 uniformly spread contours from the minimum to the maximum

intensity for the left panel and 20 similar uniformly spread contours for the right panel. The isotope labeled components are highlighted with red dotted

squares and the cross peaks with white dotted ones. [Color figure can be viewed at wileyonlinelibrary.com]

Figure 10. Computed 2D absorptive spectra using the ZZZZ scheme of a a) and b b) secondary structure separately of ubiquitin (1UBQ). The contours are plotted

with a 10% intensity of the maximum amplitude and 20 uniformly spread contours from the minimum to the maximum intensity for the left panel and 20 similar

uniformly spread contours for the right panel. Cross-peaks are highlighted with white dotted squares. [Color figure can be viewed at wileyonlinelibrary.com]

Table 5. The studied proteins (with PDB codes), the number of residues, and fraction of coil composition, the two-quantum transition dipole strengths

per residue j~lj4total
residue

.

Protein Number of residues % Coil residues j~lj4total=residue D4ð Þ j~lj2total=residue D2ð Þ

a-lactalbumin (1ALC) 122 19 0.47 0.69

Myoglobin (1MBC) 152 15 0.47 0.69

Lysozyme (2LYM) 128 14 0.40 0.63

Concanavalin A (3CNA) 237 14 0.80 0.89

Ubiquitin (1UBQ) 76 16 0.32 0.57

Ribonuclease A (7RSA) 123 28 0.48 0.69

The fraction of coil composition was computed from PROMOTIF,[92] as in Table 2.
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Conclusion

Overall, the calculations have quantitatively reproduced 1D-IR

spectra for the proteins studied. We have investigated the sensi-

tivity of the Amide I peaks to conformational dynamics. Our

motivation was to investigate the effect of conformational

dynamics on the overall lineshapes. The mixing of the local

modes that underlies the 1D-IR spectra is revealed more explic-

itly, although not with complete clarity in the 2D-IR spectra. Our

study shows that the Cho model[47] in combination with MD

simulations confirm the importance of conformational dynamics

in affecting the overall absorbance. We would expect different

maps[50,55–60] would yield qualitatively similar findings, although

some of the quantitative detail might vary.[62,105]

The computed 2DIR spectra for ubiquitin, carbonmonoxy-

myoglobin, a-lactalbumin, concanavalin A, flavadoxin, and ribonu-

clease A are broadly in agreement with that presented in previous

studies.[62,63,102,104] Solvation plays a significant role in the nature

of the computed spectra. Through calculations of the Amide I

band and analysis of the exciton Hamiltonian matrix, it is possible

to relate specific conformational features to the IR spectrum. Delv-

ing deeper into the dynamics of proteins and studying single

snapshots for both concanvalin A and carbonmonoxy-myoglobin

provides a stepping stone to understanding the appearance of

the 2D spectra. The width of the 1D spectra is reflected in the

linewidth of the diagonal on the 2D spectra. The off-diagonal

cross peaks were enhanced for ubiquitin, carbonmonoxy-

myoglobin, a-lactalbumin, and concanavalin A by computing the

hZZZZi23hZXXZi spectra for each case. We explored whether

there is a relationship between the contribution to the 2D diago-

nal signal and the fraction of random coil, but none was evident.

We are currently studying the dynamics and 2D IR spectroscopy

of protein-ligand binding, and investigating the behavior of cou-

pled modes during binding and dissociation.
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