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ABSTRACT

Images and spectra obtained from aberration corrected scanning transmission electron microscopes (STEM) are now used routinely to quantify
the morphology, structure, composition, chemistry, bonding, and optical/electronic properties of nanostructures, interfaces, and defects in many
materials/biological systems. However, obtaining quantitative and reproducible atomic resolution observations from some experiments is actually
harder with these ground-breaking instrumental capabilities, as the increase in beam current from using the correctors brings with it the potential
for electron beam modification of the specimen during image acquisition. This beam effect is even more acute for in situ STEM observations,
where the desired outcome being investigated is a result of a series of complicated transients, all of which can be modified in unknown ways by
the electron beam. The aim in developing and applying new methods in STEM is, therefore, to focus on more efficient use of the dose that is sup-
plied to the sample and to extract the most information from each image (or set of images). For STEM (and for that matter, all electron/ion/
photon scanning systems), one way to achieve this is by sub-sampling the image and using Inpainting algorithms to reconstruct it. By separating
final image quality from overall dose in this way and manipulating the dose distribution to be best for the stability of the sample, images can be
acquired both faster and with less beam effects. In this paper, the methodology behind sub-sampling and Inpainting is described, and the potential
for Inpainting to be applied to novel real time dynamic experiments will be discussed.

VC 2023 Author(s). All article content, except where otherwise noted, is licensed under a Creative Commons Attribution (CC BY) license (http://
creativecommons.org/licenses/by/4.0/). https://doi.org/10.1063/5.0135245

I. INTRODUCTION

In a standard scanning pattern used for scanning transmission
electron microscopes (STEM) and many other instruments, the scan
system works by moving the beam from left to right across a single
row with a dwell time for each pixel in that row (Fig. 1). At the end of
the row, the beam flies back to the left-hand side, moves down one
pixel, and then completes a row again [this is like the way a traditional
typewriter works or an older cathode ray tube (CRT) television]. After
the flyback, the beam typically has a longer dwell time at the left-edge
to allow for any hysteresis in the scan to damp out and the left-edge of

the scan to be aligned at the same location for each row. This form of
scanning is known to present difficulties with beam damage, particu-
larly on the left-hand edge of the raster, and this has led to alternative
spiral scanning approaches1,2 to extract higher resolution images with
less beam damage.

The beam size in the STEM is the same regardless of the
magnification of the image, which can be as small as �0.1 nm for a
Cs-corrected STEM.3,4 In a low magnification image, therefore, the
area of the scan is large, and the pixel size is correspondingly much
larger than the size of the beam. For example, for the Cs-corrected
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STEM above, in a 1000 � 1000-pixel scan covering 1 � 1mm2, the
pixel size is 1lm, i.e., 1000� the size of the beam. To achieve atomic
resolution in STEM, the magnification of the microscope is increased
to the point where the pixel size approaches atomic separation, i.e.,
�0.1–0.5 nm. In the highest resolution images, the magnification is
turned up to a level where the pixel size is actually much smaller than
the probe size, leading to an oversampled image where beam damage
is prevalent.5

When a STEM is at low magnification, beam damage is not a
critical issue, as the distance between beam locations is very large, and
the likelihood that the scan hits exactly the same location in successive
sweeps is very small—damage can still occur, but it is below the scale
of the image resolution. It is only when the beam and pixel size start to
converge that the damage becomes serious, and this is, of course, the
condition for the highest spatial resolution images. If we think about
the problem from the perspective of overlapping beam positions and
their effect on the measurable damage, then it is clear that if we can
increase the spacing of the beam positions at high magnification, then
we will be able to avoid/reduce the beam damage problem that plagues
high resolution scanning electron microscope (SEM)/STEM (Fig. 1).
This reduction in beam damage effects is actually what has been seen
in cases where expanding the time and space between measurements

reduces damage.6–12 Of course, the issue with this “sparse sampling”
approach is that we would then need a means to reconstruct the full
image from the sub-sampled acquisition. As the quality of the image
then would depend on how many pixels were included, the optimal
sampling would be defined as where beam damage is minimized while
the reconstruction quality is maximized. We note here that the recent
development of the Moir�e STEM achieves atomic resolution images
from a lower magnification image (i.e., sub-sampled scan) with
reduced dose by utilizing a geometrical interference effect between the
STEM beam and the sample lattice.13–15 This methodology represents
a special case, i.e., where the sample geometry is known and an atomic
resolution image is desired, of the general sub-sampling approaches
and reconstructions described in the remainder of this manuscript.

II. SPARSE SAMPLING AND RECONSTRUCTION FROM
A SINGLE IMAGE

As we can see from Fig. 1, it is possible to obtain a sub-sampled
scanned image by using both a set of “random” beam positions and a
“random walk” or “line-hop” scan. Practically, the line-hop approach
is easier to implement on standard electron microscopes as it avoids
much of the hysteresis issue present in conventional scanning systems,
permitting the system to run at the fastest possible speed11

FIG. 1. Examples of various scanning patterns in a 9 � 9 grid. Number and color indicate scanning order. (a) Raster scanning is the traditional method of scanning in
STEM. (b) Down sampling akin to low magnification image acquisition. (c) Space filling random scanning has been shown to reduce beam damage in beam sensitive sam-
ples.10 (d) and (e) Two scanning patterns possible using probe sub-sampling; sub-sampled random scanning and sub-sampled line hop (i.e., random walk) scanning at
33.3% sampling ratio.
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(more advanced electrostatic deflection systems can avoid this
hysteresis5 and use the full benefit of a truly random scan). The key
challenge for all sub-sampling methods is to reconstruct the sub-
sampled image. Compressive sensing16,17 is a method of efficient signal
acquisition and reconstruction via the solving of a set of undetermined
linear equations. Like traditional image compression techniques, it
relies upon the fact that given an appropriate coordinate system (or
“Dictionary”), complex high dimensional signals such as an image can
be expressed within a margin of error by a potentially much smaller
set of parameters, describing a linear combination of signal patterns
with their respective scalar coefficients.18,19 The goal for any image
reconstruction is to form a complete signal (with the smallest error)
from as few measurements as possible.20,21

Traditional image Inpainting methods rely on a dictionary learn-
ing algorithm such as the method of optimal directions (MOD)22 or
K-SVD23 to form a dictionary of representative signal patterns from a
fully sampled image, which via a sparse linear combination with

corresponding scalar coefficients can closely represent any given patch
(smaller segment) of the image. This dictionary, along with a now sub-
sampled version of the same image, may then be passed to a sparse
pursuit algorithm to solve the following system of equations (for each i
th overlapping patch of the image):

vi ¼ Ui � Dai þ �ið Þ; (1)

x̂ i ¼ Dai; (2)

where vi 2 Rn is the measured (sub-sampled) signal subject to noise
�i 2 Rn, Ui 2 0; 1f gn�n is the binary sensing matrix (or “mask,”
determining the locations of missing pixels), and x̂ i 2 Rn is the recon-
structed (fully sampled) signal represented using the given dictionary
D 2 Rn�k and corresponding “weight” vector ai 2 Rk.

Examples of algorithms capable of solving this include Orthogonal
Matching Pursuit (OMP) and its many similar variants24,25 or Basis
Pursuit, which involves the minimization of the l1 norm.26

FIG. 2. (a) A series of 1D dictionary elements (Fourier components in this case) can be combined with defined scalar weightings to reproduce the true 1D signal (b). When
only a few distinct points in the complex signal are used, it is still possible to generate a good fit using the dictionary elements. (d) A dictionary of 2D elements (again Fourier
components) can be combined with defined scalar weightings (e) to produce a reconstruction (f), which is indistinguishable from the true 2D signal. By reducing the number of
points in the true signal (g), we can increase the speed and decrease the dose in the sampling of our experiment (h) but still generate a good fit to the data (i). For comparison,
(j) shows the dictionary learned directly from the sub-sampled image in (h).
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More recently, a reformulation of the dictionary learning problem into
the Bayesian regime has produced algorithms, such as Beta-Process
Factor Analysis (BPFA),27 which are capable of so-called “blind
inpainting,”28 i.e., the formation of a dictionary and subsequent recon-
struction of an image using only the sub-sampled image as its input
(therefore, there is no need for a mask to be provided a priori or a fully
sampled version of the image to be acquired at any stage in the process).
For this reason, BPFA represents an ideal starting algorithm for sub-
sampled scanned images, which can be refined using dictionary seed-
ing/transfer approaches (see later Section III of this paper).

As an example of how this process can work, consider the case of
a simple one-dimensional (1D) signal, such as a wave shown in Fig. 2.
Here, a series of dictionary elements (in this case 1D Fourier compo-
nents) can be used to reconstruct a true signal [Fig. 2(b)]. However,
now what happens if we do not measure the complete signal? Figure
2(c) shows 25% sub-sampling of the true signal from Fig. 2(b). It is
clear from Fig. 2(c) that we can fit the dictionary elements to the sub-
sampled observation, effectively “inpainting” the missing level of sam-
pling in our experiment. As we reduce the level of sampling, the ability
to “fit” to the data with a minimal error is reduced, until typically at
�2% sampling, the error is unacceptably large.29 However, given that
the damage induced in the sample is a function of the speed of the
scan, the overlap of the beam positions, reducing the overall number
of beam positions in the image by this factor of 50, can have a tremen-
dous effect on the overall sample stability during the experiment. This
approach is also easily extendable to higher dimension images, with
the same approach as above shown for the reconstruction of the 2D
image of “Barbara” [Figs. 2(d)–2(i)]. In this case, the reconstruction
was obtained using BPFA to Inpaint the sub-sampled image.30

In the use of the BPFA methodology, there are a number of tunable
parameters that are used to increase the efficiency of the algorithms to
reconstruct the images.11 Here again, it is possible to reconstruct 2D
images with high precision from a sampling of �2%31,32 (this also
extends to non-rectangular scans,33 3D tomography,34,35 4D methods
such as ptychography,36,37 and higher dimensional datasets).

III. DICTIONARY TRANSFER AND SEEDING WITH FAST
SIMULATIONS

From the results in Sec. II, it is clear that we can use a dictionary
for our single sub-sampled image with standard Fourier components
or learn the dictionary for the reconstruction directly from the sub-
sampled image using BPFA.11 However, could we use a dictionary that
we have learned from one image to reconstruct another? The reason we
may want to consider this is that if one type of image had a better sig-
nal-to-noise ratio (SNR), then we may get a more accurate dictionary,
improving the speed and fidelity of the reconstruction of subsequent
images if we use the dictionary from that “best image.”30 We may also
be able to create a master dictionary that would allow us to sub-select
the best dictionary to reconstruct any particular set of images. When
using BPFA, which has the benefit of working directly on sub-sampled
images, the most time-consuming part of the reconstruction process is
the dictionary determination—we can speed up significantly by using
an existing optimal dictionary. In order to test this dictionary transfer
concept, we can simply try it for two images that show strikingly differ-
ent contrast and see what happens. Figure 3 shows two images: their
dictionaries learnt by K-SVD and the reconstructions of 25% sub-
sampled images using the dictionary from the other image. The quality
of the reconstructions in each case is shown in Table I. As can be clearly

FIG. 3. (a) Image of Barbara and dictionary, (b) atomic resolution STEM image of SrTiO3 and dictionary, (c) 25% Barbara reconstructed with STEM dictionary, and (d) 25%
STEM reconstructed with Barbara dictionary.
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seen, it is possible to swap dictionaries and still achieve a high-quality
reconstruction. The limitation in this example is that it takes longer to
achieve the required reconstruction quality.

A particularly useful application of the dictionary transfer process
is in the use of simulations for image analysis. For many types of
images in STEM, SEM, and other microscopies, simulations are used
to match expected contrast to actual contrast and quantify the struc-
ture giving rise to the image. Usually, this is a computationally inten-
sive methodology as the potential unknowns in the image
(composition, thickness, detection efficiency, defocus, etc.) require
multiple simulations to be performed to match the experimental
image.4 In the case of the sub-sampling approach, however, we can
use the dictionary from a simulated image to seed the experimental
reconstruction, or we can use a dictionary learned from experimental
image to match the theory, or we can combine the two images
together to make a combined dictionary that is optimal for both.34

As we do not need the full dataset for the simulations (BPFA can
reconstruct a partial simulation), we can also sub-sample the num-
ber of frozen phonon configurations, locations in real space, and
experimental conditions to increase the speed for the simulations,
potentially allowing for each of them to be performed in real time
during experiments.40 As with the reconstructions described previ-
ously, by having a dictionary and reconstruction, it means that
there are quantifiable fits to the experiment, theory, and combina-
tion of the two. Rather than matching to experimental conditions,
the theory and experiment are solved together, and the differences
can be quantified and identified from a single simulation. As a sim-
ple example of this approach, 10% sub-sampled simulations of
SrTiO3 obtained using MULTEM41 are shown in Fig. 4(a), along
with their dictionary and full reconstruction. Also shown in Fig. 4
is the reconstruction of the 25% SrTiO3 image shown in Fig. 3,
using the simulated dictionary in Fig. 4(c). A quantified compari-
son of the reconstruction of this image is shown in Table I. A key
factor here is that unlike the example of Fig. 3, where the dictio-
nary was poorly suited in the transfer and making the reconstruc-
tion become more complex, here, we are simplifying the
reconstruction by making the dictionary specifically for the experi-
mental image we want to reconstruct.

IV. LEARNING FOR COMPRESSED HYPERSPECTRAL
IMAGING

In the discussion so far, we have focused on an approach that
uses the dictionary obtained from a single image (and our demonstra-
tion example has used atomic resolution images). However, if there
are multiple images that are being acquired in an experiment (for
example, with a movie and/or multiple different detector types), or we
have multiple experiments performed on the same or similar samples,
then there are opportunities to refine the reconstruction of sub-
sampled images even further. This type of approach falls within the
general topic of hyperspectral imaging (HSI),42 and there are many
powerful deep learning approaches that have been developed for this
type of data structure.43,44 In the case of their use in scanning (trans-
mission) electron microscopy, the goal in the experiment is always to
be ahead of the beam damage that is induced in the experiment, and
that means we will always be signal limited and looking for methods
that will work under low SNR conditions. In the example we show in
this section, we aim to reconstruct a general hyperspectral image data-
cube with ten spectral channels and 1 backscattered electron (BSE)
channel and avoid the advantages of symmetry that can assist with the
reconstruction of atomic resolution images.

Supervised methods44,45 make use of a “ground truth” to train a
deep neural network (DNN), capable of denoising images, by mapping
the noisy image to a clean Ref. 46. This can achieve state-of-the-art
image performance with a large enough dataset for training but can
struggle to adapt to unseen data with new models of noise. For the
STEM case, a ground truth image may not be possible to acquire with-
out damage. However, with unsupervised learning approaches, it is
possible for a DNN to instead learn the mapping between indepen-
dently measured noisy images to predict a clean signal with no refer-
ence ground truth,47 achieving similar performance to the supervised
method. Noise2Self48 is one method that extended this idea to exploit
the noise independence between pixels, relaxing the requirement for
collecting two independent noisy images and providing theoretical
performance guarantees of such an approach. A semi-supervised
approach may also play an important role when there are a ground
truth for part of the data.

Figure 5 shows a small section of a much larger area energy dis-
persive x-ray (EDS) spectrum map acquired with two different dwell
times using a scanning electron microscope (SEM). Also shown are
reconstructions of these two datasets using a 3D BPFA implementa-
tion, in which a high SNR fully sampled backscattered electron (BSE)
image is included as one of the layers alongside the EDS data cube.
Extended into 3D, rather than learning dictionary elements of size
[b� b] as typical with 2D dictionary learning, dictionary elements of
size [b� b � N] are used, where N is the number of layers to the data
cube (N¼ 11 for this example). In the case presented, each layer is a
different elemental map produced, with the first layer being the BSE
image. This dictionary, which considers features along the spectral
axis, is designed to take advantage of the relationship that exists
between both spatial and spectral information available in the data
cube. In using the high signal BSE image, this method aims to take
advantage of its high spatial resolution to aid in reconstruction. Two
use cases are presented in Fig. 5: a low dwell time acquisition (1 ls),
wherein the full spatial domain is sampled, and a high dwell time
acquisition (100 ls) in which only 1% of the spatial domain is sampled
randomly. These two scenarios exhibit incompleteness in two

TABLE I. Comparison of reconstruction quality for the images shown in Figs. 3 and
4 using standard peak signal to noise ratio (PSNR)38 measured in decibels (dB) (the
higher the number, the better the reconstruction) and Structural Similarity Index
Measure (SSIM)39 metrics (a number closer to 1 is better). As a general rule of
thumb, a PSNR value greater than 20 dB is an acceptable reconstruction, over 25 dB
is a very good reconstruction, and over 30 dB is indistinguishable from the ground
truth (also the same for an SSIM of 0.95 or above). �Note that dictionary generated
from image simulation was applied to a cropped area of the full STEM image.

Input image

Barbara STEM

PSNR (dB) SSIM PSNR (dB) SSIM

Dictionary Barbara 24.72 0.77 25.66 0.9
STEM 23.81 0.63 31.46 0.98

Simulation� � � � � � � 26.13 0.92
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domains: spectral and spatial, respectively. While the low dwell time
dataset may sample every location, the spectral information collected
at those locations is weak (low SNR). For the high dwell time dataset,
the inverse is true; at each sampled location, the full (high SNR) spec-
tra are acquired but only a few datapoints are acquired. 3D BPFA can
take both of these inputs and produce detailed spectrum maps with
significant quality increases over the original data. Both of these use
cases, from an experimental point of view, would theoretically have
the same incident electron dose rate and acquisition time. One of the
main benefits of using a method such as this is that no training data or
prior-learned model is required. All that is necessary is the input data,
and a set of input parameters tailored to that input data.

V. CONCLUSIONS AND OUTLOOK

The methodology described here can allow scanned images to be
acquired at least 10–100� faster and coupled with a dose fractionation
that maximizes the beam spacing in space and time, thereby minimiz-
ing electron beam damage. Although the full potential of these techni-
ques, such as BPFA and DNN, is yet to be fully exploited and
evaluated, such an approach increases the range of beam sensitive
samples that can be studied by advanced STEM (and other scanned)
methods. In addition, this methodology is particularly important for
the rapid throughput of scanned experiments, as technique develop-
ments over the last few have moved to more and more pixels over an
ever-increasing analysis area. For example, ptychography in STEM,36

serial block face SEM,49 and FIB-SEM slice and view50 are all pushing
large scan dimensions even up to the 100 million pixel range, making
the time of image acquisition the main limitation that is key to all
future applications of these methods. In some cases, such as Z-contrast
STEM,4 by reducing the number of pixels in an image, dynamic in situ
phenomena can be directly observed where the beam does not signifi-
cantly change the observation.51 Techniques that were once only

thought of as only applicable to high resolution imaging can, therefore,
now become in situ methods. The use of DNNs to learn an Inpainting
model from a set of samples means that we can also, in principle, teach
a microscope how to image a particular type of sample more
efficiently.

Another aspect of scanned imaging is that this form of sub-
sampling and Inpainting reconstruction facilitates is the potential for
dynamic control of the microscope. If we take a 1 mega pixel example
with a 1 ls dwell time, then on a standard scan, we would acquire �1
frame per second (not accounting for the flyback time). At 10% sam-
pling, this becomes 10 frames/second, which means that we effectively
can perform sub-original-frame analysis for key things like defocus,
stigmation, drift, tilt, etc., or measure damage and damage rate inde-
pendently to determine the best acquisition time for high resolution
images. While the ability to reconstruct the image and perform the
analytics to change the microscope alignment parameters would have
to be performed in real time, there is increasing evidence that this
should be routinely possible soon. The codes that perform the
Inpainting work on a patch-by-patch basis across the whole image and
each refinement can be performed in parallel, meaning that the speed
can be increased by scaling efficient codes on a GPU platform. The dif-
ference in time between the Inpainting of a 5% sampled image and a
10% sampled image is negligible, meaning that the final speed of the
imaging process is limited only by the acquisition time at these sam-
pling levels. For things like defocus and drift, it is also important to
understand that we also do not need to reconstruct across the whole
image to accomplish control, and a few patches at specific locations
would be all that would be needed. Another key part of the speed dis-
cussion is that there is a difference between the image that is needed to
control the microscope and the image that is used for the final analysis.
A poorer quality, i.e., faster reconstruction, could be enough to control
the microscope and ensure that the best experimental imaging

FIG. 4. (a) Three 10% sub-sampled simulations corresponding to different frozen phonon configurations of SrTiO3, and the reconstructed simulation using BPFA (b) as well as
the dictionary determined by BPFA (c). This dictionary is then used to reconstruct a 25% sub-sampled crop of the SrTiO3 from Fig. 3(d), with the reconstruction (e) having a
92% similarity to the reference image.
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parameters were used during the experiment. After the experiment is
completed, all the images could be transferred and analyzed with a
range of dictionaries, algorithms, and approaches to determine the
best result after the optimal reconstruction methods were used. Of
course, at this point, the best overall result would then be used to mod-
ify the dictionary/algorithm in a positive way, allowing all previous
images to be re-analyzed to improve existing/prior results.

It is worth noting that all of the above discussions for the use of
the data are with images that are �1%–10% of the size of the original
fully sampled image. At the time of acquisition, whatever the best
approach to reconstruction exists would set the limit of sub-sampling
and ensure that there is no data loss ever. Improvements in recon-
struction and analysis that may come from a better algorithm in the
future are not inherent in the storage architecture, meaning that
the smallest amount of data is always kept for the best algorithm
available—a better algorithm may lead to all existing images being
reduced even further. Another key part in the discussion of
scanned images is that often it is not the image that is important
but the analysis of what the image shows, for example, the number
and size distribution of nanoparticles in a particular area or part of
the structure. As there is enough information in the sub-sampled
image to reconstruct a full image, it means there is enough infor-
mation to work with advanced image analytics. So, in the example

above, the image analytics for edge detection and size determina-
tion would be able to run directly on the sub-sampled data, but as
it is sub-sampled, there is less data to analyze and a faster
result.52,53 It may be possible that complete data analysis could be
performed during a microscope experiment, and users of the
instruments leave with their data rather than their results to be
analyzed at a later time. As with the final resolution of the images,
even if there are sacrifices in having large error bars in data to get
it quickly, the quality of data will be enough to determine the
course of the experiment, and the errors can always be improved
off-line using the best supporting data/algorithms.

In summary, whether sub-sampling and Inpainting are used to
improve image speed, control dose fractionation, reduce damage, pro-
vide real time adaptive scanning and autonomous instrument controls,
learn the optimal reconstruction and denoising approach to all (sub-
and fully sampled) images, or simply to reduce size of images for stor-
age and/or transmission, these applications can all fundamentally
change the way that we acquire and use images from STEM and other
scanned microscopes in the future.

This work was performed in the Albert Crewe Centre (ACC)
for Electron Microscopy, a shared research facility (SRF) fully
supported by the University of Liverpool. This work was also

FIG. 5. (a) Untreated EDS spectrum image with 1 ls dwell time at 100% sampling from a sample of granite, containing the following minerals: muscovite (purple), illite
(orange), quartz (dark purple), apatite (green), and rutile (lilac). (b) Untreated EDS spectrum image with 100 ls dwell time at 100% sampling. (c) 3D BPFA treated version of
(a), 1 ls dwell time at 100% sampling. (d) 3D BPFA treated version of (b), with 100 ls dwell time but sampled randomly at 1%. Both (c) and (d) have the same theoretical
electron dose exposure and acquisition time. Changes in image contrast between (a) and (b) are due to increased signal-to-noise ratio when scanning with higher dwell times.
Changes in image contrast between (c) and (d), which are formed from the same electron dose rate, are due to the efficiency of the algorithm to construct the complete
dataset. All images contain the BSE image as a layer in the data cube. Image color denotes chemical composition, as indicated by the legend. Image dimensions are 1.11
� 0.835mm2. We would like to thank Dr Louise Hughes and Dr Matthew Hiscock for supplying these data and help with analysis.
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