41 research outputs found

    An Extracellular Domain of the Insulin Receptor β-Subunit with Regulatory Function on Protein-Tyrosine Kinase

    Get PDF
    Abstract Anti-insulin receptor monoclonal antibody MA-10 inhibits insulin receptor autophosphorylation of purified rat liver insulin receptors without affecting insulin binding (Cordera, R., Andraghetti, G., Gherzi, R., Adezati, L., Montemurro, A., Lauro, R., Goldfine, I. D., and De Pirro, R. (1987) Endocrinology 121, 2007-2010). The effect of MA-10 on insulin receptor autophosphorylation and on two insulin actions (thymidine incorporation into DNA and receptor down-regulation) was investigated in rat hepatoma Fao cells. MA-10 inhibits insulin-stimulated receptor autophosphorylation, thymidine incorporation into DNA, and insulin-induced receptor down-regulation without affecting insulin receptor binding. We show that MA-10 binds to a site of rat insulin receptors different from the insulin binding site in intact Fao cells. Insulin does not inhibit MA-10 binding, and MA-10 does not inhibit insulin binding to rat Fao cells. Moreover, MA-10 binding to down-regulated cells is reduced to the same extent as insulin binding. In rat insulin receptors the MA-10 binding site has been tentatively localized in the extracellular part of the insulin receptor beta-subunit based on the following evidence: (i) MA-10 binds to insulin receptor in intact rat cells; (ii) MA-10 immunoprecipitates isolated insulin receptor beta-subunits labeled with both [35S]methionine and 32P; (iii) MA-10 reacts with rat insulin receptor beta-subunits by the method of immunoblotting, similar to an antipeptide antibody directed against the carboxyl terminus of the insulin receptor beta-subunit. Moreover, MA-10 inhibits autophosphorylation and protein-tyrosine kinase activity of reduced and purified insulin receptor beta-subunits. The finding that MA-10 inhibits insulin-stimulated receptor autophosphorylation and reduces insulin-stimulated thymidine incorporation into DNA and receptor down-regulation suggests that the extracellular part of the insulin receptor beta-subunit plays a role in the regulation of insulin receptor protein-tyrosine kinase activity

    KSRP-PMR1-exosome association determines parathyroid hormone mRNA levels and stability in transfected cells

    Get PDF
    <p>Abstract</p> <p>Background</p> <p>Parathyroid hormone (PTH) gene expression is regulated post-transcriptionally through the binding of the <it>trans-</it>acting proteins AU rich binding factor 1 (AUF1), Upstream of N-<it>ras </it>(Unr) and KH-type splicing regulatory protein (KSRP) to an AU rich element (ARE) in PTH mRNA 3'-UTR. AUF1 and Unr stabilize PTH mRNA while KSRP, recruiting the exoribonucleolytic complex exosome, promotes PTH mRNA decay.</p> <p>Results</p> <p>PTH mRNA is cleaved by the endoribonuclease polysomal ribonuclease 1 (PMR1) in an ARE-dependent manner. Moreover, PMR1 co-immunoprecipitates with PTH mRNA, the exosome and KSRP. Knock-down of either exosome components or KSRP by siRNAs prevents PMR1-mediated cleavage of PTH mRNA.</p> <p>Conclusion</p> <p>PTH mRNA is a target for the endonuclease PMR1. The PMR1 mediated decrease in PTH mRNA levels involves the PTH mRNA 3'-UTR ARE, KSRP and the exosome. This represents an unanticipated mechanism by which the decay of an ARE-containing mRNA is facilitated by KSRP and is dependent on both the exosome and an endoribonuclease.</p

    The RNA-Binding Protein KSRP Promotes Decay of β-Catenin mRNA and Is Inactivated by PI3K-AKT Signaling

    Get PDF
    β-catenin plays an essential role in several biological events including cell fate determination, cell proliferation, and transformation. Here we report that β-catenin is encoded by a labile transcript whose half-life is prolonged by Wnt and phosphatidylinositol 3-kinase–AKT signaling. AKT phosphorylates the mRNA decay-promoting factor KSRP at a unique serine residue, induces its association with the multifunctional protein 14-3-3, and prevents KSRP interaction with the exoribonucleolytic complex exosome. This impairs KSRP's ability to promote rapid mRNA decay. Our results uncover an unanticipated level of control of β-catenin expression pointing to KSRP as a required factor to ensure rapid degradation of β-catenin in unstimulated cells. We propose KSRP phosphorylation as a link between phosphatidylinositol 3-kinase–AKT signaling and β-catenin accumulation

    Noncanonical G recognition mediates KSRP regulation of let-7 biogenesis

    Get PDF
    Let-7 is an important tumor-suppressive microRNA (miRNA) that acts as an on-off switch for cellular differentiation and regulates the expression of a set of human oncogenes. Binding of the human KSRP protein to let-7 miRNA precursors positively regulates their processing to mature let-7, thereby contributing to control of cell proliferation, apoptosis and differentiation. Here we analyze the molecular basis for KSRP-let-7 precursor selectivity and show how the third KH domain of the protein recognizes a G-rich sequence in the pre-let-7 terminal loop and dominates the interaction. The structure of the KH3-RNA complex explains the protein recognition of this noncanonical KH target sequence, and we demonstrate that the specificity of this binding is crucial for the functional interaction between the protein and the miRNA precursor

    Long Non-Coding RNA-Ribonucleoprotein Networks in the Post-Transcriptional Control of Gene Expression

    No full text
    Although mammals possess roughly the same number of protein-coding genes as worms, it is evident that the non-coding transcriptome content has become far broader and more sophisticated during evolution. Indeed, the vital regulatory importance of both short and long non-coding RNAs (lncRNAs) has been demonstrated during the last two decades. RNA binding proteins (RBPs) represent approximately 7.5% of all proteins and regulate the fate and function of a huge number of transcripts thus contributing to ensure cellular homeostasis. Transcriptomic and proteomic studies revealed that RBP-based complexes often include lncRNAs. This review will describe examples of how lncRNA-RBP networks can virtually control all the post-transcriptional events in the cell

    Bone Morphogenetic Protein/SMAD Signaling Orients Cell Fate Decision by Impairing KSRP-Dependent MicroRNA Maturation

    Get PDF
    MicroRNAs (miRNAs) are essential regulators of development, physiology, and evolution, and their biogenesis is strictly controlled at multiple levels. Regulatory proteins, such as KSRP, modulate rates and timing of enzymatic reactions responsible for maturation of select miRNAs from their primary transcripts in response to specific stimuli. Here, we show that KSRP silencing in mesenchymal C2C12 cells produces a change in the transcriptome largely overlapping that induced by bone morphogenetic protein 2 (BMP2) signaling activation. This induces osteoblastic differentiation while preventing myogenic differentiation. KSRP silencing- and BMP2-dependent myogenic miRNA (myomiR) maturation blockade is required for osteoblastic differentiation of C2C12 cells. Our results demonstrate that phosphorylated R-SMAD proteins, the transducers of BMP2 signal, associate with phosphorylated KSRP and block its interaction with primary myomiRs. This abrogates KSRP-dependent myomiR maturation, with SMAD4, SMAD5, and SMAD9 silencing being able to rescue KSRP function. Thus, SMAD-induced blockade of KSRP-dependent myomiR maturation is critical for orienting C2C12 cell differentiation toward osteoblastic lineage
    corecore