359 research outputs found
Size-Dependent Surface Plasmon Dynamics in Metal Nanoparticles
We study the effect of Coulomb correlations on the ultrafast optical dynamics
of small metal particles. We demonstrate that a surface-induced dynamical
screening of the electron-electron interactions leads to quasiparticle
scattering with collective surface excitations. In noble-metal nanoparticles,
it results in an interband resonant scattering of d-holes with surface
plasmons. We show that this size-dependent many-body effect manifests itself in
the differential absorption dynamics for frequencies close to the surface
plasmon resonance. In particular, our self-consistent calculations reveal a
strong frequency dependence of the relaxation, in agreement with recent
femtosecond pump-probe experiments.Comment: 8 pages + 4 figures, final version accepted to PR
Identification of RAD51-BRCA2 Inhibitors Using N-Acylhydrazone-Based Dynamic Combinatorial Chemistry
RAD51 is an ATP-dependent recombinase, recruited by BRCA2 to mediate DNA double-strand breaks repair through homologous recombination and represents an attractive cancer drug target. Herein, we applied for the first-time protein-templated dynamic combinatorial chemistry on RAD51 as a hit identification strategy. Upon design of N-acylhydrazone-based dynamic combinatorial libraries, RAD51 showed a clear templating effect, amplifying 19 N-acylhydrazones. Screening against the RAD51-BRCA2 protein-protein interaction via ELISA assay afforded 10 inhibitors in the micromolar range. Further 19F NMR experiments revealed that 7 could bind RAD51 and be displaced by BRC4, suggesting an interaction in the same binding pocket of BRCA2. These results proved not only that ptDCC could be successfully applied on full-length oligomeric RAD51, but also that it could address the need of alternative strategies toward the identification of small-molecule PPI inhibitors
Ultrafast optical generation of coherent phonons in CdTe1-xSex quantum dots
We report on the impulsive generation of coherent optical phonons in
CdTe0.68Se0.32 nanocrystallites embedded in a glass matrix. Pump probe
experiments using femtosecond laser pulses were performed by tuning the laser
central energy to resonate with the absorption edge of the nanocrystals. We
identify two longitudinal optical phonons, one longitudinal acoustic phonon and
a fourth mode of a mixed longitudinal-transverse nature. The amplitude of the
optical phonons as a function of the laser central energy exhibits a resonance
that is well described by a model based on impulsive stimulated Raman
scattering. The phases of the coherent phonons reveal coupling between
different modes. At low power density excitations, the frequency of the optical
coherent phonons deviates from values obtained from spontaneous Raman
scattering. This behavior is ascribed to the presence of electronic impurity
states which modify the nanocrystal dielectric function and, thereby, the
frequency of the infrared-active phonons
Permafrost molards as an analogue for ejecta-ice interactions at Hale Crater, Mars
When the Hale impact crater penetrated the martian cryosphere 1Ga, landforms indicating post-impact volatile mobilisation were generated. We have found landforms in the ejecta blanket of Hale Crater similar to ‘permafrost molards’ found in periglacial environments on Earth, and probably related to the past or present presence of volatiles at/near the surface. Permafrost molards are conical mounds of debris associated with landslide deposits, resulting from the degradation of blocks of ice-rich material mobilised by a landslide in periglacial terrains. Here we analyse the spatial and topographic distribution of conical mounds around the Hale crater at regional and local scales, and compare them to those of molards on the deposits of the Mount Meager debris avalanche in Canada. Hale Crater's conical mounds are located at the distal boundary of the thickest ejecta blanket, which is the closest to the main crater. We observe a similar spatial arrangement of molards along the distal parts of the terminal lobe of the Mount Meager debris avalanche. We then compare the morphology and morphometrics of the conical mounds on Hale Crater to those of terrestrial molards on the Paatuut and Niiortuut rock avalanches in western Greenland. We find that morphology and setting of conical mounds within Hale Crater ejecta are consistent with the formation pathway of molards on Earth. We infer that they originated from blocks of ice-cemented regolith that were produced by the Hale-crater-forming impact, transported by the ejecta flows, and finally degraded to cones of debris (molards) on loss of the interstitial ice. The similarities in distribution between the ejecta flows of Hale and Mount Meager debris avalanche on Earth suggest that the mounds resulted from the rheological separation of the ejecta flows, with a relatively fluid-poor phase that allowed the volatile-rich blocks to survive transport. This supports the prevailing hypothesis that the Hale impact event penetrated the martian cryosphere, providing important constraints on the rheology of martian ejecta deposits
New Lidocaine-Based Pharmaceutical Cocrystals: Preparation, Characterization, and Influence of the Racemic vs. Enantiopure Coformer on the Physico-Chemical Properties
This study describes the preparation, characterization, and influence of the enantiopure vs. racemic coformer on the physico-chemical properties of a pharmaceutical cocrystal. For that purpose, two new 1:1 cocrystals, namely lidocaine:dl-menthol and lidocaine:d-menthol, were prepared. The menthol racemate-based cocrystal was evaluated by means of X-ray diffraction, infrared spectroscopy, Raman, thermal analysis, and solubility experiments. The results were exhaustively compared with the first menthol-based pharmaceutical cocrystal, i.e., lidocaine:l-menthol, discovered in our group 12 years ago. Furthermore, the stable lidocaine/dl-menthol phase diagram has been screened, thoroughly evaluated, and compared to the enantiopure phase diagram. Thus, it has been proven that the racemic vs. enantiopure coformer leads to increased solubility and improved dissolution of lidocaine due to the low stable form induced by menthol molecular disorder in the lidocaine:dl-menthol cocrystal. To date, the 1:1 lidocaine:dl-menthol cocrystal is the third menthol-based pharmaceutical cocrystal, after the 1:1 lidocaine:l-menthol and the 1:2 lopinavir:l-menthol cocrystals reported in 2010 and 2022, respectively. Overall, this study shows promising potential for designing new materials with both improved characteristics and functional properties in the fields of pharmaceutical sciences and crystal engineering
Molards as an analogue for ejecta-ice interactions on Mars
International audience<p>The 125-km-diameter Hale impact crater is located in the southern hemisphere of Mars and has been dated to 1 Ga (Early to Middle Amazonian; Jones et al., 2011). It is thought to have penetrated the martian cryosphere, because it hosts landforms indicating volatile mobilisation post-impact: its ejecta are lobate and bear channels, and the interior is pervasively pitted and hosts alluvial fans (Collins-May et al. 2020; El-Maarry et al., 2013; Jones et al., 2011; Tornabene et al., 2012). Here, we test the hypothesis that conical mounds found within the ejecta are &#8220;molards&#8221; by comparing them to terrestrial analogues. Molards are conical mounds of debris resulting from the degradation of blocks of ice-rich material which have been mobilised by a landslide and are found in periglacial environments (Morino et al., 2019).</p><p>Our study area (240x180 km) is in the South-East part of the Hale impact crater ejecta (36&#176;&#8211;39&#176;S, 36&#176;&#8211;31&#176;W). We analyse the spatial and topographic distribution of the conical mounds using orbital images from 25 cm/pixel to 15 m/pixel and measure their height, width and slope using 1 m/pixel elevation data. We then compare them to conical mounds on the deposits of the 2010 Mount Meager debris avalanche, Canada (Roberti et al. 2017) and of the 2000 Paatuut landslide in western Greenland (Dahl-Jensen et al. 2004).</p><p>The conical mounds of the Hale impact crater are located at the distal boundary of the thickest part of the ejecta blanket, which reflects the spatial distribution of mounds along the distal parts of the terminal lobe of the Mount Meager debris avalanche. Furthermore, mounds in the Hale impact crater have comparable shapes and flank slopes to molards in the Mount Meager and Paatuut case studies, but are one order of magnitude bigger. This size difference is consistent with the flow-depth that transported the blocks also being one order of magnitude bigger than on Earth.</p><p>We infer that conical mounds near the Hale impact crater are a result of fragmented blocks of ice-cemented regolith produced by the impact and transported by the ejecta flows, and finally degraded into cones of debris (molards) by the loss of interstitial ice. Our interpretation supports the prevailing hypothesis that the Hale impact event penetrated the martian cryosphere and further provides important constraints on the rheology of martian ejecta deposits that can be tested by future studies and in other locations on Mars.</p><p>We acknowledge financial support for the PERMOLARDS project from French National Research Agency (ANR-19-CE01-0010).</p>
Estimativa dos Fluxos Superficiais de Energia Utilizando o Modelo de SuperfÃcie Noah
This study aims to compare the surface flows of energy (sensibleheat and latent) obtained from Candiota07 micrometeorologicalexperiment with the results estimated by the Noah surface model.According to the results, the Noah surface model presents a goodagreement with observed data, except for the flow of latent heat duringthe night.O presente trabalho tem por objetivo comparar os fluxos superficiaisde energia (calor sensÃvel e latente) obtidos a partir do experimentomicrometeorológico Candiota07 com os resultados estimados pelomodelo de superfÃcie Noah. De acordo com os resultados, o modelo desuperfÃcie Noah apresenta uma boa concordância com os dados observados,exceto para o fluxo de calor latente durante o perÃodo noturno
Thioflavine-T and Congo Red reveal the polymorphism of insulin amyloid fibrils when probed by polarization-resolved fluorescence microscopy.
International audienceAmyloid fibrils are protein misfolding structures that involve a β-sheet structure and are associated with the pathologies of various neurodegenerative diseases. Here we show that Thioflavine-T and Congo Red, two major dyes used to image fibrils by fluorescence assays, can provide deep structural information when probed by means of polarization-resolved fluorescence microscopy. Unlike fluorescence anisotropy or fluorescence detected linear dichroism imaging, this technique allows to retrieve simultaneously both mean orientation and orientation dispersion of the dye, used here as a reporter of the fibril structure. We have observed that insulin amyloid fibrils exhibit a homogeneous behavior over the fibrils' length, confirming their structural uniformity. In addition, these results reveal the existence of various structures among the observed fibrils' population, in spite of a similar aspect when imaged with conventional fluorescence microscopy. This optical nondestructive technique opens perspectives for in vivo structural analyses or high throughput screening
Electrical Sintering of Silver Nanoparticle Ink Studied by In-Situ TEM Probing
Metallic nanoparticle inks are used for printed electronics, but to reach acceptable conductivity the structures need to be sintered, usually using a furnace. Recently, sintering by direct resistive heating has been demonstrated. For a microscopic understanding of this Joule heating sintering method, we studied the entire process in real time inside a transmission electron microscope equipped with a movable electrical probe. We found an onset of Joule heating induced sintering and coalescence of nanoparticles at power levels of 0.1–10 mW/m3. In addition, a carbonization of the organic shells that stabilize the nanoparticles were found, with a conductivity of 4 105 Sm−1
- …