87 research outputs found

    Phenolic profiles of quince (Cydonia oblonga Mill.) leaf extracts obtained by different extraction methods

    Get PDF
    Extracts from quince leaves are a well-known home remedy used for treating diverse health problems. Most of the beneficial properties of quince leaf extracts may be assigned to their high content of phenolic compounds, particularly tannins. In this research, we have evaluated the efficiency of various methods for phenolic extraction from quince leaves and determined detailed phenolic profiles of different extracts. The results indicated that leaf drying is a suitable pretreatment for enhancing the extraction of phenolic compounds. Higher extraction of phenolics was achieved at higher temperatures (i.e. infusion or decoction). Phenolic profiles of quince leaf extracts differed among the extraction solvents and time of extraction. Flavanols prevailed in extracts obtained by decoction and ethanolic maceration, while extracts obtained by maceration in water and infusion were rich in phenolic acids. A highly concentrated quince leaf extract was attained by ethanolic maceration, using a standard ratio of solvent and leaf material

    The Phenolic Profile of Sweet Cherry Fruits Influenced by Cultivar/Rootstock Combination

    Get PDF
    The influence of three cultivars (‘Carmen’, ‘Kordia’ and ‘Regina’) grafted on six rootstocks (Mahaleb, ‘Colt’, ‘Oblacinska’, ‘M × M 14′, ‘Gisela 5′ and ‘Gisela 6′) on the phenolic profile of sweet cherry fruits was studied during a two-year period. All the individual phenolic compounds were detected using high-pressure liquid chromatography with diode-array detection coupled with mass spectrometry (HPLC-DAD-MSn). In all the examined samples, 54 compounds were identified and divided into five phenolic classes: anthocyanins (4 compounds), flavonols (7), flavanols (11), flavanones (4), and hydroxycinnamic acids (28). Anthocyanins (58%) and hydroxycinnamic acids (31%) showed the greatest amounts in all the examined fruit samples. PCA analysis revealed that among the cultivars, ‘Kordia’ showed the highest phenolic content. Regarding rootstocks, the lowest values of the most important phenolic compounds were obtained in fruits from trees grafted onto the seedling rootstock Mahaleb. Among the clonal rootstocks, the vigorous ‘Colt’ and dwarf ‘Gisela 5′ promoted the highest values of the evaluated phenolic compounds in the cultivars ‘Kordia’ and ‘Carmen’, while the dwarf ‘Oblacinska’ and semi-vigorous ‘M × M 14′ induced the highest values in the cultivar ‘Regina’. By evaluating the influence of cultivars and rootstocks on the phenolic content in fruit, it has been proven that the cultivar has the most significant influence. However, the rootstock also influences the content of a large number of phenolic compounds. The selection of an adequate cultivar/rootstock combination can also be a powerful tool for improving the phenolic content in fruits, and consequently the nutritional value of sweet cherry fruits. © 2022 by the authors

    The Effects of the Cultivar and Environment on the Phenolic Contents of Hazelnut Kernels

    Get PDF
    Different climatic conditions are known to affect the synthesis of primary and secondary metabolites. Therefore, the phenolic contents in new growing areas could affect the quality and flavor of hazelnuts. The aim of this study was to determine the variability of the phenolic contents of the kernels in different commercial hazelnut cultivars depending on their growing area. Five cultivars (‘Tonda Gentile delle Langhe’, ‘Merveille de Bollwiller’, ‘Pauetet’, ‘Tonda di Giffoni’, and ‘Barcelona’ (syn. ‘Fertile de Coutard’)) grown in different European collection orchards were included in the study. High-performance liquid chromatography coupled with mass spectrometry was used to identify and quantify the phenolic compounds. Thirteen phenols were identified in the hazelnut kernels, including 7 flavanols, 2 hydroxybenzoic acids, 3 flavonols, and one dihydrochalcone. Catechin and procyanidin dimers were the main phenolic compounds found in the hazelnut kernels. The highest contents of catechin and total flavanols were determined in cultivars cultivated in Spain and northern Italy, and the lowest in Slovenia and France. Flavanols were the major phenolic groups independent of the place of cultivation, as they accounted for more than 50% of all phenolic compounds identified. The flavanols were followed by hydroxybenzoic acids, flavonols, and dihydrochalcones. Higher contents of flavanols and flavonols were found in kernels from areas characterized by higher natural irradiation, which stimulates their accumulation. The contents of hydroxybenzoic acids correlated with altitude, which stimulated phenolic acid synthesis. A negative correlation was observed between the dihydrochalcone content and annual rainfall, probably due to hydric stress.info:eu-repo/semantics/publishedVersio

    LC–DAD–MS phenolic characterisation of six invasive plant species in Croatia and determination of their antimicrobial and cytotoxic activity

    Get PDF
    Invasive plants’ phytochemicals are important for their invasiveness, enabling them to spread in new environments. However, these chemicals could offer many pharmaceutical compounds or active ingredients for herbal preparations. This study provides the first LC–MS phytochemical screening of six invasive alien plant species (IAPS) in the Istria region (Croatia): Ailanthus altissima, Ambrosia artemisiifolia, Conyza canadensis, Dittrichia viscosa, Erigeron annuus, and Xanthium strumarium. The study aims to identify and quantify the phenolic content of their leaf extracts and assess their antimicrobial and cytotoxic potential. A total of 32 species-specific compounds were recorded. Neochlorogenic, chlorogenic, and 5-p-coumaroylquinic acids, quercetin-3-glucoside, and kaempferol hexoside were detected in all the tested IAPS. Hydroxycinnamic acid derivatives were the main components in all the tested IAPS, except in E. annuus, where flavanones dominated with a share of 70%. X. strumarium extract had the best activity against the tested bacteria, with an average MIC value of 0.11 mg/mL, while A. altissima and X. strumarium extracts had the best activity against the tested fungi, with an average MIC value of 0.21 mg/mL in both cases. All the plant extracts studied, except X. strumarium, were less cytotoxic than the positive control. The results provided additional information on the phytochemical properties of IAPS and their potential for use as antimicrobial agents.SUPPLEMENTARY MATERIALS : Figure S1: Heat map presenting the representations of phenolic groups in different invasive plants; Figure S2: Chromatogram of the acetone extracts of the plant species leaves developed in ethyl acetate/methanol/water (EMW) solvent system sprayed with vanillin– sulphuric acid and TLC bioautograms; Table S1: Spectrum, mass-to-charge ratio (m/z) values of the molecular masses, and main fragments (MS2—second-generation product ion, MS3—thirdgeneration product ion) in negative ion mode ((M-H)−) identified with ESI–MS and the distribution of individual compounds in different invasive plants.The Croatian Science Foundation, the Slovenian Research Agency (ARRS) and the University of Pretoria, South Africa.https://www.mdpi.com/journal/plantsdm2022Paraclinical Science

    Multiplicity and transverse momentum fluctuations in inelastic proton-proton interactions at the CERN Super Proton Synchrotron

    Get PDF
    Measurements of multiplicity and transverse momentum fluctuations of charged particles were performed in inelastic p+p interactions at 20, 31, 40, 80 and 158 GeV/c beam momentum. Results for the scaled variance of the multiplicity distribution and for three strongly intensive measures of multiplicity and transverse momentum fluctuations \$\Delta[P_{T},N]\$, \$\Sigma[P_{T},N]\$ and \$\Phi_{p_T}\$ are presented. For the first time the results on fluctuations are fully corrected for experimental biases. The results on multiplicity and transverse momentum fluctuations significantly deviate from expectations for the independent particle production. They also depend on charges of selected hadrons. The string-resonance Monte Carlo models EPOS and UrQMD do not describe the data. The scaled variance of multiplicity fluctuations is significantly higher in inelastic p+p interactions than in central Pb+Pb collisions measured by NA49 at the same energy per nucleon. This is in qualitative disagreement with the predictions of the Wounded Nucleon Model. Within the statistical framework the enhanced multiplicity fluctuations in inelastic p+p interactions can be interpreted as due to event-by-event fluctuations of the fireball energy and/or volume.Comment: 18 pages, 12 figure

    Measurement of Production Properties of Positively Charged Kaons in Proton-Carbon Interactions at 31 GeV/c

    Get PDF
    Spectra of positively charged kaons in p+C interactions at 31 GeV/c were measured with the NA61/SHINE spectrometer at the CERN SPS. The analysis is based on the full set of data collected in 2007 with a graphite target with a thickness of 4% of a nuclear interaction length. Interaction cross sections and charged pion spectra were already measured using the same set of data. These new measurements in combination with the published ones are required to improve predictions of the neutrino flux for the T2K long baseline neutrino oscillation experiment in Japan. In particular, the knowledge of kaon production is crucial for precisely predicting the intrinsic electron neutrino component and the high energy tail of the T2K beam. The results are presented as a function of laboratory momentum in 2 intervals of the laboratory polar angle covering the range from 20 up to 240 mrad. The kaon spectra are compared with predictions of several hadron production models. Using the published pion results and the new kaon data, the K+/\pi+ ratios are computed.Comment: 10 pages, 11 figure

    NA61/SHINE facility at the CERN SPS: beams and detector system

    Get PDF
    NA61/SHINE (SPS Heavy Ion and Neutrino Experiment) is a multi-purpose experimental facility to study hadron production in hadron-proton, hadron-nucleus and nucleus-nucleus collisions at the CERN Super Proton Synchrotron. It recorded the first physics data with hadron beams in 2009 and with ion beams (secondary 7Be beams) in 2011. NA61/SHINE has greatly profited from the long development of the CERN proton and ion sources and the accelerator chain as well as the H2 beamline of the CERN North Area. The latter has recently been modified to also serve as a fragment separator as needed to produce the Be beams for NA61/SHINE. Numerous components of the NA61/SHINE set-up were inherited from its predecessors, in particular, the last one, the NA49 experiment. Important new detectors and upgrades of the legacy equipment were introduced by the NA61/SHINE Collaboration. This paper describes the state of the NA61/SHINE facility - the beams and the detector system - before the CERN Long Shutdown I, which started in March 2013

    Energy dependence of identified hadron spectra and event-by-event fluctuations in p+p interactions from NA61/SHINE at the CERN SPS

    Get PDF

    Measurements of Production Properties of K0S mesons and Lambda hyperons in Proton-Carbon Interactions at 31 GeV/c

    Full text link
    Spectra of K0S mesons and Lambda hyperons were measured in p+C interactions at 31 GeV/c with the large acceptance NA61/SHINE spectrometer at the CERN SPS. The data were collected with an isotropic graphite target with a thickness of 4% of a nuclear interaction length. Interaction cross sections, charged pion spectra, and charged kaon spectra were previously measured using the same data set. Results on K0S and Lambda production in p+C interactions serve as reference for the understanding of the enhancement of strangeness production in nucleus-nucleus collisions. Moreover, they provide important input for the improvement of neutrino flux predictions for the T2K long baseline neutrino oscillation experiment in Japan. Inclusive production cross sections for K0S and Lambda are presented as a function of laboratory momentum in intervals of the laboratory polar angle covering the range from 0 up to 240 mrad. The results are compared with predictions of several hadron production models. The K0S mean multiplicity in production processes and the inclusive cross section for K0S production were measured and amount to 0.127 +- 0.005 (stat) +- 0.022 (sys) and 29.0 +- 1.6 (stat) +- 5.0 (sys) mb, respectively
    corecore