4,469 research outputs found

    JEC Well-To-Wheels report v5

    Get PDF
    JRC (the Joint Research Centre of the European Commission), EUCAR and Concawe have updated their joint evaluation of the Well-to-Wheels energy use and greenhouse gas (GHG) emissions for a wide range of potential future fuel and powertrain options, first published in December 2003. As an update of the previous version, the objectives of JEC WTW v5 are to establish, in a transparent and objective manner, a consensual Well-to-Wheels energy use and GHG emissions assessment of a wide range of automotive fuels and powertrains relevant to Europe in 2025 and beyond. This versions updates the technologies investigated and applies a common methodology and data-set to estimate WTW emissions. This WTW version 5 concentrates on the evaluation of energy and GHG balances for the different combinations of fuel and powertrains, in road transport. The current version 5 investigates, for the first time, the heavy duty segment, thus expanding the scope of the previous versions of the study.JRC.C.2-Energy Efficiency and Renewable

    Noninvasive estimation of left ventricular filling pressures in patients with heart failure after surgical ventricular restoration and restrictive mitral annuloplasty

    Get PDF
    ObjectiveDoppler echocardiography, including tissue Doppler imaging, is widely applied to assess diastolic left ventricular function using early transmitral flow velocity combined with mitral annular velocity as a noninvasive estimate of left ventricular filling pressures. However, the accuracy of early transmitral flow velocity/mitral annular velocity in patients with heart failure, particularly after extensive cardiac surgery, is debated. Global diastolic strain rate during isovolumic relaxation obtained with 2-dimensional speckle-tracking analysis was recently proposed as an alternative approach to estimate left ventricular filling pressures.MethodsWe analyzed diastolic function in patients with heart failure after surgical ventricular restoration and/or restrictive mitral annuloplasty. Echocardiography, including tissue Doppler imaging and speckle-tracking analysis, was performed to determine early transmitral flow velocity/atrial transmitral flow velocity, isovolumetric relaxation time, deceleration time, early transmitral flow velocity/mean mitral annular velocity, strain rate during isovolumic relaxation, and early transmitral flow velocity/strain rate during isovolumic relaxation. These noninvasive indices were correlated with relaxation time constant Tau, peak rate of pressure decline, and left ventricular end-diastolic pressure obtained in the catheterization room using high-fidelity pressure catheters.ResultsTwenty-three patients were analyzed 6 months after restrictive mitral annuloplasty (n = 8), surgical ventricular restoration (n = 4), or a combined procedure (n = 11). The strongest correlation with invasive indices, in particular left ventricular end-diastolic pressure, was found for strain rate during isovolumic relaxation (r = −0.76, P < .001). Early transmitral flow velocity/mean mitral annular velocity did not correlate significantly with any of the invasive indices. Strain rate during isovolumic relaxation (cutoff value < 0.38 s−1) accurately predicted left ventricular end-diastolic pressure of 16 mm Hg or more with 100% sensitivity and 93% specificity.ConclusionsIn a group of patients with heart failure who were investigated 6 months after cardiac surgery, early transmitral flow velocity/mean mitral annular velocity correlated poorly with invasively obtained diastolic indexes. Global strain rate during isovolumic relaxation, however, correlated well with left ventricular end-diastolic pressure and peak rate of pressure decline. Our data suggest that global strain rate during isovolumic relaxation is a promising noninvasive index to assess left ventricular filling pressures in patients with heart failure after extensive cardiac surgery, including restrictive mitral annuloplasty and surgical ventricular restoration

    JEC Well-to-Tank report v5: Well-to-Wheels analysis of future automotive fuels and powertrains in the European context

    Get PDF
    The JEC consortium is a long-standing collaboration among the European Commission’s Joint Research Centre (EC-JRC), EUCAR (the European council for Automotive Research and development) and Concawe (the scientific body of the European Refiners’ Association for environment, health and safety in refining and distribution). The consortium periodically updates their joint evaluation of the Well-to-Wheels (WTW) energy use and greenhouse gas (GHG) emissions, for a wide range of potential future powertrains and fuels options, within the European context. The present Well-To-Tank report belongs to a series of JEC WTW related reports where the process of producing, transporting, manufacturing and distributing a number of fuels suitable for road transport powertrains is described. The JEC WTT v5 assesses the incremental emissions (marginal approach) associated with the production of a unit of alternative fuel, with respect to the current status of production.JRC.C.2-Energy Efficiency and Renewable

    Identification of genes encoding antimicrobial proteins in Langerhans cells

    Get PDF
    Langerhans cells (LCs) reside in the epidermis where they are poised to mount an antimicrobial response against microbial pathogens invading from the outside environment. To elucidate potential pathways by which LCs contribute to host defense, we mined published LC transcriptomes deposited in GEO and the scientific literature for genes that participate in antimicrobial responses. Overall, we identified 31 genes in LCs that encode proteins that contribute to antimicrobial activity, ten of which were cross-validated in at least two separate experiments. Seven of these ten antimicrobial genes encode chemokines

    Evolution of Diverse, Manufacturable Robot Body Plans

    Get PDF
    Advances in rapid prototyping have opened up new avenues of research within Evolutionary Robotics in which not only controllers but also the body plans (morphologies) of robots can evolve in real-time and real-space. However, this also introduces new challenges, in that robot models that can be instantiated from an encoding in simulation might not be manufacturable in practice (due to constraints associated with the 3D printing and/or automated assembly processes). We introduce a representation for evolving (wheeled) robots with a printed plastic skeleton, and evaluate three variants of a novelty-search algorithm in terms of their ability to produce populations of manufacturable but diverse robots. While the set of manufacturable robots discovered represent only a small fraction of the overall search space of all robots, all methods are shown to be capable of generating a diverse population of manufacturable robots that we conjecture is large enough to seed an evolving robotic ecosystem

    Hardware Design for Autonomous Robot Evolution

    Get PDF
    The long term goal of the Autonomous Robot Evolution (ARE) project is to create populations of physical robots, in which both the controllers and body plans are evolved. The transition for evolutionary designs from purely simulation environments into the real world creates the possibility for new types of system able to adapt to unknown and changing environments. In this paper, a system for creating robots is introduced in order to allow for their body plans to be designed algorithmically and physically instantiated using the previously introduced Robot Fabricator. This system consists of two types of components. Firstly, \textit{skeleton} parts are created bespoke for each design by 3D printing, allowing the overall shape of the robot to include almost infinite variety. To allow for the shortcomings of 3D printing, the second type of component are \textit{organs} which contain components such as motors and sensors, and can be attached to the skeleton to provide particular functions. Specific organ designs are presented, with discussion of the design challenges for evolutionary robotics in hardware. The Robot Fabricator is extended to allow for robots with joints, and some example body plans shown to demonstrate the diversity possible using this system of robot generation

    Physical Origin of the Optical Degradation of InAs Quantum Dot Lasers

    Get PDF
    We present an extensive analysis of the physical mechanisms responsible for the degradation of 1.3-μm InAs quantum dot lasers epitaxially grown on Si, for application in silicon photonics. For the first time, we characterize the degradation of the devices by combined electro-optical measurements, electroluminescence spectra, and current-voltage analysis. We demonstrate the following original results: when submitted to a current step-stress experiment: 1) QD lasers show a measurable increase in threshold current, which is correlated to a decrease in slope efficiency; 2) the degradation process is stronger, when devices are stressed at current higher than 200 mA, i.e., in the stress regime, where both ground-state and excited-state emission are present; and 3) in the same range of stress currents, an increase in the defect-related current components is also detected, along with a slight decrease in the series resistance. Based on the experimental evidence collected within this paper, the degradation of QD lasers is ascribed to a recombination-enhanced defect reaction (REDR) process, activated by the escape of electrons out of the quantum dots

    Metallicity Gradients at Large Galactocentric Radii Using the Near-infrared Calcium Triplet

    Get PDF
    We describe a new spectroscopic technique for measuring radial metallicity gradients out to large galactocentric radii. We use the DEIMOS multi-object spectrograph on the Keck telescope and the galaxy spectrum extraction technique of Proctor et al. (2009). We also make use of the metallicity sensitive near-infrared (NIR) Calcium triplet (CaT) features together with single stellar population models to obtain metallicities. Our technique is applied as a pilot study to a sample of three relatively nearby (<30 Mpc) intermediate-mass to massive early-type galaxies. Results are compared with previous literature inner region values and generally show good agreement. We also include a comparison with profiles from dissipational disk-disk major merger simulations. Based on our new extended metallicity gradients combined with other observational evidence and theoretical predictions, we discuss possible formation scenarios for the galaxies in our sample. The limitations of our new technique are also discussed.Comment: 13 Pages, 9 Figures, 7 Tables, Accepted for publication in MNRA

    Discovery of an intermediate-luminosity red transient in M51 and its likely dust-obscured, infrared-variable progenitor

    Get PDF
    We present the discovery of an optical transient (OT) in Messier 51, designated M51 OT2019-1 (also ZTF19aadyppr, AT 2019abn, ATLAS19bzl), by the Zwicky Transient Facility (ZTF). The OT rose over 15 days to an observed luminosity of Mr=−13M_r=-13 (νLν=9×106 L⊙{\nu}L_{\nu}=9\times10^6~L_{\odot}), in the luminosity gap between novae and typical supernovae (SNe). Spectra during the outburst show a red continuum, Balmer emission with a velocity width of ≈400\approx400 km s−1^{-1}, Ca II and [Ca II] emission, and absorption features characteristic of an F-type supergiant. The spectra and multiband light curves are similar to the so-called "SN impostors" and intermediate-luminosity red transients (ILRTs). We directly identify the likely progenitor in archival Spitzer Space Telescope imaging with a 4.5 μ4.5~\mum luminosity of M[4.5]≈−12.2M_{[4.5]}\approx-12.2 and a [3.6]−[4.5][3.6]-[4.5] color redder than 0.74 mag, similar to those of the prototype ILRTs SN 2008S and NGC 300 OT2008-1. Intensive monitoring of M51 with Spitzer further reveals evidence for variability of the progenitor candidate at [4.5] in the years before the OT. The progenitor is not detected in pre-outburst Hubble Space Telescope optical and near-IR images. The optical colors during outburst combined with spectroscopic temperature constraints imply a higher reddening of E(B−V)≈0.7E(B-V)\approx0.7 mag and higher intrinsic luminosity of Mr≈−14.9M_r\approx-14.9 (νLν=5.3×107 L⊙{\nu}L_{\nu}=5.3\times10^7~L_{\odot}) near peak than seen in previous ILRT candidates. Moreover, the extinction estimate is higher on the rise than on the plateau, suggestive of an extended phase of circumstellar dust destruction. These results, enabled by the early discovery of M51 OT2019-1 and extensive pre-outburst archival coverage, offer new clues about the debated origins of ILRTs and may challenge the hypothesis that they arise from the electron-capture induced collapse of extreme asymptotic giant branch stars.Comment: 21 pages, 5 figures, published in ApJ
    • …
    corecore