170 research outputs found

    Galaxy Zoo builder:four-component photometric decomposition of spiral galaxies guided by citizen science

    Get PDF
    Multicomponent modeling of galaxies is a valuable tool in the effort to quantitatively understand galaxy evolution, yet the use of the technique is plagued by issues of convergence, model selection, and parameter degeneracies. These issues limit its application over large samples to the simplest models, with complex models being applied only to very small samples. We attempt to resolve this dilemma of "quantity or quality" by developing a novel framework, built inside the Zooniverse citizen-science platform, to enable the crowdsourcing of model creation for Sloan Digital Sky Survey galaxies. We have applied the method, including a final algorithmic optimization step, on a test sample of 198 galaxies, and examine the robustness of this new method. We also compare it to automated fitting pipelines, demonstrating that it is possible to consistently recover accurate models that either show good agreement with, or improve on, prior work. We conclude that citizen science is a promising technique for modeling images of complex galaxies, and release our catalog of models

    Galaxy zoo builder:morphological dependence of spiral galaxy pitch angle

    Get PDF
    Spiral structure is ubiquitous in the Universe, and the pitch angle of arms in spiral galaxies provide an important observable in efforts to discriminate between different mechanisms of spiral arm formation and evolution. In this paper, we present a hierarchical Bayesian approach to galaxy pitch angle determination, using spiral arm data obtained through the Galaxy Builder citizen science project. We present a new approach to deal with the large variations in pitch angle between different arms in a single galaxy, which obtains full posterior distributions on parameters. We make use of our pitch angles to examine previously reported links between bulge and bar strength and pitch angle, finding no correlation in our data (with a caveat that we use observational proxies for both bulge size and bar strength which differ from other work). We test a recent model for spiral arm winding, which predicts uniformity of the cotangent of pitch angle between some unknown upper and lower limits, finding our observations are consistent with this model of transient and recurrent spiral pitch angle as long as the pitch angle at which most winding spirals dissipate or disappear is larger than 10°. © 2021 The Author(s) 2021. Published by Oxford University Press on behalf of Royal Astronomical Society

    Space Warps II. New Gravitational Lens Candidates from the CFHTLS Discovered through Citizen Science

    Get PDF
    We report the discovery of 29 promising (and 59 total) new lens candidates from the CFHT Legacy Survey (CFHTLS) based on about 11 million classifications performed by citizen scientists as part of the first Space Warps lens search. The goal of the blind lens search was to identify lens candidates missed by robots (the RingFinder on galaxy scales and ArcFinder on group/cluster scales) which had been previously used to mine the CFHTLS for lenses. We compare some properties of the samples detected by these algorithms to the Space Warps sample and find them to be broadly similar. The image separation distribution calculated from the Space Warps sample shows that previous constraints on the average density profile of lens galaxies are robust. SpaceWarps recovers about 65% of known lenses, while the new candidates show a richer variety compared to those found by the two robots. This detection rate could be increased to 80% by only using classifications performed by expert volunteers (albeit at the cost of a lower purity), indicating that the training and performance calibration of the citizen scientists is very important for the success of Space Warps. In this work we present the SIMCT pipeline, used for generating in situ a sample of realistic simulated lensed images. This training sample, along with the false positives identified during the search, has a legacy value for testing future lens finding algorithms. We make the pipeline and the training set publicly available.Comment: 23 pages, 12 figures, MNRAS accepted, minor to moderate changes in this versio

    Space Warps: I. Crowd-sourcing the Discovery of Gravitational Lenses

    Get PDF
    We describe Space Warps, a novel gravitational lens discovery service that yields samples of high purity and completeness through crowd-sourced visual inspection. Carefully produced colour composite images are displayed to volunteers via a web- based classification interface, which records their estimates of the positions of candidate lensed features. Images of simulated lenses, as well as real images which lack lenses, are inserted into the image stream at random intervals; this training set is used to give the volunteers instantaneous feedback on their performance, as well as to calibrate a model of the system that provides dynamical updates to the probability that a classified image contains a lens. Low probability systems are retired from the site periodically, concentrating the sample towards a set of lens candidates. Having divided 160 square degrees of Canada-France-Hawaii Telescope Legacy Survey (CFHTLS) imaging into some 430,000 overlapping 82 by 82 arcsecond tiles and displaying them on the site, we were joined by around 37,000 volunteers who contributed 11 million image classifications over the course of 8 months. This Stage 1 search reduced the sample to 3381 images containing candidates; these were then refined in Stage 2 to yield a sample that we expect to be over 90% complete and 30% pure, based on our analysis of the volunteers performance on training images. We comment on the scalability of the SpaceWarps system to the wide field survey era, based on our projection that searches of 105^5 images could be performed by a crowd of 105^5 volunteers in 6 days.Comment: 21 pages, 13 figures, MNRAS accepted, minor to moderate changes in this versio

    Robustness of Equations Under Operational Extensions

    Full text link
    Sound behavioral equations on open terms may become unsound after conservative extensions of the underlying operational semantics. Providing criteria under which such equations are preserved is extremely useful; in particular, it can avoid the need to repeat proofs when extending the specified language. This paper investigates preservation of sound equations for several notions of bisimilarity on open terms: closed-instance (ci-)bisimilarity and formal-hypothesis (fh-)bisimilarity, both due to Robert de Simone, and hypothesis-preserving (hp-)bisimilarity, due to Arend Rensink. For both fh-bisimilarity and hp-bisimilarity, we prove that arbitrary sound equations on open terms are preserved by all disjoint extensions which do not add labels. We also define slight variations of fh- and hp-bisimilarity such that all sound equations are preserved by arbitrary disjoint extensions. Finally, we give two sets of syntactic criteria (on equations, resp. operational extensions) and prove each of them to be sufficient for preserving ci-bisimilarity.Comment: In Proceedings EXPRESS'10, arXiv:1011.601

    Testing timed systems modeled by stream X-machines

    Get PDF
    Stream X-machines have been used to specify real systems where complex data structures. They are a variety of extended finite state machine where a shared memory is used to represent communications between the components of systems. In this paper we introduce an extension of the Stream X-machines formalism in order to specify systems that present temporal requirements. We add time in two different ways. First, we consider that (output) actions take time to be performed. Second, our formalism allows to specify timeouts. Timeouts represent the time a system can wait for the environment to react without changing its internal state. Since timeous affect the set of available actions of the system, a relation focusing on the functional behavior of systems, that is, the actions that they can perform, must explicitly take into account the possible timeouts. In this paper we also propose a formal testing methodology allowing to systematically test a system with respect to a specification. Finally, we introduce a test derivation algorithm. Given a specification, the derived test suite is sound and complete, that is, a system under test successfully passes the test suite if and only if this system conforms to the specification

    Structure and pathogenicity of antibodies specific for citrullinated collagen type II in experimental arthritis

    Get PDF
    Antibodies to citrulline-modifi ed proteins have a high diagnostic value in rheumatoid arthritis (RA). However, their biological role in disease development is still unclear. To obtain insight into this question, a panel of mouse monoclonal antibodies was generated against a major triple helical collagen type II (CII) epitope (position 359 – 369; ARGLTGRPGDA) with or without arginines modifi ed by citrullination. These antibodies bind cartilage and synovial tissue, and mediate arthritis in mice. Detection of citrullinated CII from RA patients ’ synovial fl uid demonstrates that cartilage-derived CII is indeed citrullinated in vivo. The structure determination of a Fab fragment of one of these antibodies in complex with a citrullinated peptide showed a surprising beta -turn conformation of the peptide and provided information on citrulline recognition. Based on these findings, we propose that autoimmunity to CII, leading to the production of antibodies specific for both native and citrullinated CII, is an important pathogenic factor in the development of RA

    Magnetic Resonance Imaging of the Sacroiliac Joints Indicating Sacroiliitis According to the Assessment of SpondyloArthritis international Society Definition in Healthy Individuals, Runners, and Women With Postpartum Back Pain

    Get PDF
    Objective: To compare magnetic resonance images (MRIs) of the sacroiliac (SI) joints of healthy subjects and individuals with known mechanical strain acting upon the SI joints to those of patients with axial spondyloarthritis (SpA) and patients with chronic back pain. Methods: Three readers who had received standardized training and were blinded with regard to study group randomly scored MRIs of the SI joints of 172 subjects, including 47 healthy individuals without current or past back pain, 47 axial SpA patients from the Spondyloarthritis Caught Early (SPACE) cohort (with a previous MRI confirmed positive for sacroiliitis), 47 controls with chronic back pain (irrespective of MRI results) from the SPACE cohort, 7 women with postpartum back pain, and 24 frequent runners. MRIs were scored according to the Assessment of SpondyloArthritis international Society (ASAS) definition and Spondyloarthritis Research Consortium of Canada (SPARCC) index. Results: Of the 47 healthy volunteers, 11 (23.4%) had an MRI positive for sacroiliitis, compared to 43 (91.5%) of 47 axial SpA patients and 3 (6.4%) of 47 patients with chronic back pain. Three (12.5%) of the 24 runners and 4 (57.1%) of the 7 women with postpartum back pain had a positive MRI. Using a SPARCC cutoff of ≥2 for positivity, 12 (25.5%) of 47 healthy volunteers, 46 (97.9%) of 47 positive axial SpA patients, 5 (10.6%) of 47 controls with chronic back pain, 4 (16.7%) of 24 runners, and 4 (57.1%) of 7 women with postpartum back pain had positive MRIs. Deep bone marrow edema (BME) lesions were not found in healthy volunteers, patients with chronic back pain, or runners, but were found in 42 (89.4%) of 47 positive axial SpA patients and in 1 (14.3%) of 7 women with postpartum back pain. Conclusion: A substantial proportion of healthy individuals without current or past back pain has an MRI positive for sacroiliitis according to the ASAS definition. Deep (extensive) BME lesions are almost exclusively found in axial SpA patients

    SpaceWarps- II. New gravitational lens candidates from the CFHTLS discovered through citizen science

    Get PDF
    We report the discovery of 29 promising (and 59 total) new lens candidates from the Canada-France-Hawaii Telescope Legacy Survey (CFHTLS) based on about 11 million classifications performed by citizen scientists as part of the first SpaceWarps lens search. The goal of the blind lens search was to identify lens candidates missed by robots (the ringfinder on galaxy scales and arcfinder on group/cluster scales) which had been previously used to mine the CFHTLS for lenses. We compare some properties of the samples detected by these algorithms to the SpaceWarps sample and find them to be broadly similar. The image separation distribution calculated from the SpaceWarps sample shows that previous constraints on the average density profile of lens galaxies are robust. SpaceWarps recovers about 65 per cent of known lenses, while the new candidates show a richer variety compared to those found by the two robots. This detection rate could be increased to 80 per cent by only using classifications performed by expert volunteers (albeit at the cost of a lower purity), indicating that the training and performance calibration of the citizen scientists is very important for the success of SpaceWarps. In this work we present the SIMCT pipeline, used for generating in situ a sample of realistic simulated lensed images. This training sample, along with the false positives identified during the search, has a legacy value for testing future lens-finding algorithms. We make the pipeline and the training set publicly availabl
    corecore