87 research outputs found

    Increasing variety in response to decreasing biodiversity

    Get PDF

    Assessing land-based mitigation implications for biodiversity

    Get PDF
    The Paris Agreement to keep global temperature increase to well-below 2 °C and to pursue efforts to limit it to 1.5 °C requires to formulate ambitious climate-change mitigation scenarios to reduce CO2 emissions and to enhance carbon sequestration. These scenarios likely require significant land-use change. Failing to mitigate climate change will result in an unprecedented warming with significant biodiversity loss. The mitigation potential on land is high. However, how land-based mitigation options potentially affect biodiversity is poorly understood. Some land-based mitigation options could also counter the biodiversity loss. Here we reviewed the recently scientific literature to assess twenty land-based mitigation options that are implemented in different mitigation pathways to comply with the Paris Agreement for their biodiversity impacts by using the Mean Species Abundance (MSALU) indicator for land use. We showed the likely land-use transition and potential MSALU changes for each option, compared their carbon sequestration opportunities (tC per ha) and assessed the resulting biodiversity change in two case scenarios. Our results showed that most options benefit biodiversity. Reforestation of cultivated and managed areas together with restoration of wetlands deliver the largest MSALU increases, if land is allowed to reach a mature state over time. A quarter of the assessed options, including intensification of agricultural areas and bioenergy with carbon capture and storage, decreased MSALU. Options, such as afforestation and reduced deforestation, either positively or negatively affected MSALU. This depends on their local implementation and adopted forest-conservation schemes. Comparing the different options showed that avoiding deforestation by implementing agroforestry at the expense of pastures delivered both the largest MSALU increases and the highest carbon sequestration opportunities. However, agroforestry that leads to deforestation, enhanced carbon sequestration slightly but with a marginal MSALU increase. This stresses the importance of avoiding forest conversion. Our study advances the understanding on current and future benefits and adverse effects of land-based mitigation options on biodiversity. This certainly helps biodiversity conservation and determines the regions with large land-based mitigation potential.</p

    Land use impacts on biodiversity in LCA: a global approach

    Get PDF
    Purpose: Land use is a main driver of global biodiversity loss and its environmental relevance is widely recognized in research on life cycle assessment (LCA). The inherent spatial heterogeneity of biodiversity and its non-uniform response to land use requires a regionalized assessment, whereas many LCA applications with globally distributed value chains require a global scale. This paper presents a first approach to quantify land use impacts on biodiversity across different world regions and highlights uncertainties and research needs. Methods: The study is based on the United Nations Environment Programme (UNEP)/Society of Environmental Toxicology and Chemistry (SETAC) land use assessment framework and focuses on occupation impacts, quantified as a biodiversity damage potential (BDP). Species richness of different land use types was compared to a (semi-)natural regional reference situation to calculate relative changes in species richness. Data on multiple species groups were derived from a global quantitative literature review and national biodiversity monitoring data from Switzerland. Differences across land use types, biogeographic regions (i.e., biomes), species groups and data source were statistically analyzed. For a data subset from the biome (sub-)tropical moist broadleaf forest, different species-based biodiversity indicators were calculated and the results compared. Results and discussion: An overall negative land use impact was found for all analyzed land use types, but results varied considerably. Different land use impacts across biogeographic regions and taxonomic groups explained some of the variability. The choice of indicator also strongly influenced the results. Relative species richness was less sensitive to land use than indicators that considered similarity of species of the reference and the land use situation. Possible sources of uncertainty, such as choice of indicators and taxonomic groups, land use classification and regionalization are critically discussed and further improvements are suggested. Data on land use impacts were very unevenly distributed across the globe and considerable knowledge gaps on cause-effect chains remain. Conclusions: The presented approach allows for a first rough quantification of land use impact on biodiversity in LCA on a global scale. As biodiversity is inherently heterogeneous and data availability is limited, uncertainty of the results is considerable. The presented characterization factors for BDP can approximate land use impacts on biodiversity in LCA studies that are not intended to directly support decision-making on land management practices. For such studies, more detailed and site-dependent assessments are required. To assess overall land use impacts, transformation impacts should additionally be quantified. Therefore, more accurate and regionalized data on regeneration times of ecosystems are neede

    Future projections of biodiversity and ecosystem services in Europe with two integrated assessment models

    Get PDF
    Projections of future changes in biodiversity and ecosystem services (BES) are of increasing importance to inform policy and decision-making on options for conservation and sustainable use of BES. Scenario-based modelling is a powerful tool to assess these future changes. This study assesses the consequences for BES in Europe under four socio-environmental scenarios designed from a BES perspective. We evaluated these scenarios using two integrated assessment models (IMAGE-GLOBIO and CLIMSAVE IAP, respectively). Our results showed that (i) climate and land use change will continue to pose significant threats to biodiversity and some ecosystem services, even in the most optimistic scenario; (ii) none of the four scenarios achieved overall preservation of BES in Europe; and (iii) targeted policies (e.g. on climate change, biodiversity conservation and sustainable land management) and behavioural change (e.g. reducing meat consumption, water-saving behaviour) reduced the magnitude of BES loss. These findings stress the necessity of more ambitious policies and actions if BES in Europe are to be safeguarded. We further found that the multi-modelling approach was critical to account for complementary BES dimensions and highlighted different sources of uncertainties (e.g. related to land use allocation, driving forces behind BES changes, trade assumptions), which facilitated nuanced and contextualised insights with respect to possible BES futures

    Процеси сучасної інтернаціоналізації в Азійсько-Тихоокеанському регіоні у вимірах глобальної конкуренції

    Get PDF
    In 2012, governments worldwide renewed their commitments to a more sustainable development that would eradicate poverty, halt climate change and conserve ecosystems, and initiated a process to create a long-term vision by formulating Sustainable Development Goals (SDGs). Although progress in achieving a more sustainable development has been made in some areas, overall, actions have not been able to bend the trend in critical areas (including those related to the so-called food-water-energy nexus). Here, we analyze how different combinations of technological measures and behavioral changes could contribute to achieving a set of sustainability objectives, taking into account the interlinkages between them. The objectives include eradicating hunger, providing universal access to modern energy, preventing dangerous climate change, conserving biodiversity and controlling air pollution. The analysis identifies different pathways that achieve these objectives simultaneously, but they all require substantial transformations in the energy and food systems, that go far beyond historic progress and currently formulated policies. The analysis also shows synergies and trade-offs between achieving the different objectives, concluding that achieving them requires a comprehensive approach. The scenario analysis does not point at a fundamental trade-off between the objectives related to poverty eradication and those related to environmental sustainability. The different pathways of achieving the set of long-term objectives and their implications for short-term action can contribute to building a comprehensive strategy to meet the SDGs by proposing near-term actions

    Interacting regional-scale regime shifts for biodiversity and ecosystem services

    Get PDF
    Current trajectories of global change may lead to regime shifts at regional scales, driving coupled human–environment systems to highly degraded states in terms of biodiversity, ecosystem services, and human well-being. For business-as-usual socioeconomic development pathways, regime shifts are projected to occur within the next several decades, to be difficult to reverse, and to have regional- to global-scale impacts on human society. We provide an overview of ecosystem, socioeconomic, and biophysical mechanisms mediating regime shifts and illustrate how these interact at regional scales by aggregation, synergy, and spreading processes. We give detailed examples of interactions for terrestrial ecosystems of central South America and for marine and coastal ecosystems of Southeast Asia. This analysis suggests that degradation of biodiversity and ecosystem services over the twenty-first century could be far greater than was previously predicted. We identify key policy and management opportunities at regional to global scales to avoid these shifts

    Challenges in producing policy-relevant global scenarios of biodiversity and ecosystem services

    Get PDF
    Scenario-based modelling is a powerful tool to describe relationships between plausible trajectories of drivers, possible policy interventions, and impacts on biodiversity and ecosystem services. Model inter-comparisons are key in quantifying uncertainties and identifying avenues for model improvement but have been missing among the global biodiversity and ecosystem services modelling communities. The biodiversity and ecosystem services scenario-based inter-model comparison (BES-SIM) aims to fill this gap. We used global land-use and climate projections to simulate possible future impacts on terrestrial biodiversity and ecosystem services using a variety of models and a range of harmonized metrics. The goal of this paper is to reflect on the steps taken in BES-SIM, identify remaining methodological challenges, and suggest pathways for improvement. We identified five major groups of challenges; the need to: 1) better account for the role of nature in future human development storylines; 2) improve the representation of drivers in the scenarios by increasing the resolution (temporal, spatial and thematic) of land-use as key driver of biodiversity change and including additional relevant drivers; 3) explicitly integrate species- and trait-level biodiversity in ecosystem services models; 4) expand the coverage of the multiple dimensions of biodiversity and ecosystem services; and finally, 5) incorporate time-series or one-off historical data in the calibration and validation of biodiversity and ecosystem services models. Addressing these challenges would allow the development of more integrated global projections of biodiversity and ecosystem services, thereby improving their policy relevance in supporting the interlinked international conservation and sustainable development agendas

    Projecting Global Biodiversity Indicators under Future Development Scenarios

    Get PDF
    To address the ongoing global biodiversity crisis, governments have set strategic objectives and have adopted indicators to monitor progress toward their achievement. Projecting the likely impacts on biodiversity of different policy decisions allows decision makers to understand if and how these targets can be met. We projected trends in two widely used indicators of population abundance Geometric Mean Abundance, equivalent to the Living Planet Index and extinction risk (the Red List Index) under different climate and land-use change scenarios. Testing these on terrestrial carnivore and ungulate species, we found that both indicators decline steadily, and by 2050, under a Business-as-usual (BAU) scenario, geometric mean population abundance declines by 18-35% while extinction risk increases for 8-23% of the species, depending on assumptions about species responses to climate change. BAU will therefore fail Convention on Biological Diversity target 12 of improving the conservation status of known threatened species. An alternative sustainable development scenario reduces both extinction risk and population losses compared with BAU and could lead to population increases. Our approach to model species responses to global changes brings the focus of scenarios directly to the species level, thus taking into account an additional dimension of biodiversity and paving the way for including stronger ecological foundations into future biodiversity scenario assessments.Peer reviewe

    Combining policy analyses, exploratory scenarios, and integrated modelling to assess land use policy options

    Get PDF
    Scenario-based approaches provide decision makers with accessible storylines of potential future changes. The parameterisation of such storylines as input variables for integrated assessment models allows using models as a test bed for assessing the effects of alternative land use policy options in different scenarios. However, the potential of this kind of policy-screening analysis can be further improved by assessing the institutional compatibility of the policy options under review. The aim of this paper is to explore the added value of combining institutions-oriented policy analyses with scenario-modelling approaches for improved assessments of EU land use policy options. We describe an expert-based, stepwise process to combine four scenario storylines and two integrated assessment model approaches (CLIMSAVE & IMAGE-GLOBIO) with a procedure for institutional compatibility assessment. Among the subsidies we assessed were those for technology-driven intensification of agricultural production, which would contribute to decreasing demand for cropland across a range of scenarios. In regionalised policy designs, they also contribute to ecological effectiveness, and higher costs of governing. Subsidies to promote biomass production can have negative effects on ecosystems including land conversion, conversion of grassland into cropland as well as conversion of natural forests into managed forests. These effects can to some extent be mitigated by careful policy design which considers the institutional context and features cross-sectoral coordination. An integrated Ecosystem Services Framework policy could accommodate regionalised policy designs and cross-sectoral coordination, however, it can operate only under specific circumstances and needs particular efforts. Rural development approaches are another alternative which feature expansion of cropland by means of a large-scale, bottom-up transformation based on voluntary changes in behaviour, flexibility, participation, and local and regional collaboration. Apart from a vast number of interdisciplinary lessons learned, we also gained insights from the science-policy interface. A weak EU appeared as a plausible scenario from a scientific perspective, given the current political environment. However, it appreaded to be unacceptable at EU level policy making. We decided to maintain scientific independence and looked at policy options also in the context of a weak EU yielding environmentally beneficial opportunities for regional decision making at the expense of relevance of our scenarios to EU level policy makers
    corecore