90 research outputs found

    Relationships between population spatial occupation and population dynamics

    Get PDF
    Population dynamics is commonly described non-spatially using parameters of population demography and vital traits. Population spatial organisation is therefore considered implicit and its importance in the population dynamics ignored. The present study evidences on a variety of stocks correlation between population spatial distribution indices, population abundance, recruitment and mortality. Series of research fisheries monitoring surveys were considered for a range of different stocks (cod, herring, anchovy, hake, mullet) in different regions of the North East Atlantic and Mediterranean (North Sea, Barents Sea, Baltic Sea, Bay of Biscay, Tyrrhenian Sea, Ionian Sea and Aegean Sea). For each population, each age and each year, 9 spatial indices were computed that characterised the spatial distribution in their centre of gravity, inertia, anisotropy, extension areas, number of patches and microscale structure. For each population and age, spatial indices were linearly regressed on the abundance, on the following recruitment, and on the mortality residuals (as a constant mortality has been fitted on cohort curves). A metaanalysis table was constructed that showed the number of times that correlations were significant. The result is that spatial indices provide additional indicators for assessing population status and could be helpful in the context of stock decline and habitat loss

    Influence of Defects on the Stability and Hydrogen‐Sorption Behavior of Mg‐Based Hydrides

    Get PDF
    This review deals with the destabilization methods for improvement of storage properties of metal hydrides. Both theoretical and experimental approaches were used to point out the influence of various types of defects on structure and stability of hydrides. As a case study, Mg, and Ni based hydrides has been investigated. Theoretical studies, mainly carried out within various implementations of DFT, are a powerful tool to study mostly MgH 2 based materials. By providing an insight on metal-hydrogen bonding that governs both thermodynamics and hydrogen kinetics, they allow us to describe phenomena to which experimental methods have a limited access or do not have it at all: to follow the hydrogen sorption reaction on a specific metal surface and hydrogen induced phase transformations, to describe structure of phase boundaries or to explain the impact of defects or various additives on MgH 2 stability and hydrogen sorption kinetics. In several cases theoretical calculations reveal themselves as being able to predict new properties of materials, including the ways to modify Mg or MgH 2 that would lead to better characteristics in terms of hydrogen storage. The influence of ion irradiation and mechanical milling with and without additives has been discussed. Ion irradiation is the way to introduce a well-defined concentration of defects (Frankel pairs) at the surface and sub-surface layers of a material. Defects at the surface play the main role in sorption reaction since they enhance the dissociation of hydrogen. On the other hand, ball-milling introduce defects through the entire sample volume, refine the structure and thus decrease the path for hydrogen diffusion. Two Severe Plastic Deformation techniques were used to better understand the hydrogenation/dehydrogenation kinetics of Mg- and Mg 2 Ni-based alloys: Equal-Angular-Channel-Pressing and Fast-Forging. Successive ECAP passes leads to refinement of the microstructure of AZ31 ingots and to instalment therein of high densities of defects. Depending on mode, number and temperature of ECAP passes, the H-sorption kinetics have been improved satisfactorily without any additive for mass H-storage applications considering the relative speed of the shaping procedure. A qualitative understanding of the kinetic advanced principles has been built. Fast-Forging was used for a “quasi-instantaneous” synthesis of Mg/Mg 2 Ni-based composites. Hydrogenation of the as-received almost bi-phased materials remains rather slow as generally observed elsewhere, whatever are multiple and different techniques used to deliver the composite alloys. However, our preliminary results suggest that a synergic hydrogenation / dehydrogenation process should assist hydrogen transfers from Mg/Mg 2 Ni on one side to MgH 2 /Mg 2 NiH 4 on the other side via the rather stable a-Mg 2 NiH 0.3 , acting as in-situ catalyser. © 2019 Wiley-VCH Verlag GmbH & Co. KGaA, WeinheimThis is the peer reviewed version of the following article: Grbović Novaković, J., Novaković, N., Kurko, S., MiloĆĄević Govedarović, S., Pantić, T., PaskaĆĄ Mamula, B., ... & Skryabina, N. (2019). Influence of Defects on the Stability and Hydrogen‐Sorption Behavior of Mg‐Based Hydrides. ChemPhysChem., which has been published in final form at [http://dx.doi.org/10.1002/cphc.201801125]. This article may be used for non-commercial purposes in accordance with Wiley Terms and Conditions for Use of Self-Archived Versions

    The Virgo data acquisition system

    Get PDF
    International audienc

    The gravitational wave detector VIRGO

    Get PDF
    International audienc

    Nonparametric Estimation of the Division Rate of a Size-Structured Population

    No full text

    Maxisets for Model Selection

    Get PDF
    International audienceWe address the statistical issue of determining the maximal spaces (maxisets) where model selection procedures attain a given rate of convergence. By considering first general dictionaries, then orthonormal bases, we characterize these maxisets in terms of approximation spaces. These results are illustrated by classical choices of wavelet model collections. For each of them, the maxisets are described in terms of functional spaces. We take a special care of the issue of calculability and measure the induced loss of performance in terms of maxisets

    New contact material for reduction of arc duration for dc application

    No full text
    The phenomenon of arcing is the major cause of electrical contact degradation in electrical switches. Degradation involves contact erosion and/or welding. The use of special contact material and that of specific material processing may permit contact erosion to be reduced, in particular by shortening the arc duration. A short review of these approaches is presented in the first part of this paper. In the second part, the development of a new self-blowing contact material is described. This material has been tested under dc voltages from 14 V to 42 V. A reduction of the arc duration by a factor of 4 approximately was obtained as was a concomitant reduction of the extinction gap to less than 2 mm. This material will contribute to achieving better reliability in high current-high voltages breaking devices, and will aid in their miniaturization, e.g. in relays
    • 

    corecore