57 research outputs found
The Bond-Algebraic Approach to Dualities
An algebraic theory of dualities is developed based on the notion of bond
algebras. It deals with classical and quantum dualities in a unified fashion
explaining the precise connection between quantum dualities and the low
temperature (strong-coupling)/high temperature (weak-coupling) dualities of
classical statistical mechanics (or (Euclidean) path integrals). Its range of
applications includes discrete lattice, continuum field, and gauge theories.
Dualities are revealed to be local, structure-preserving mappings between
model-specific bond algebras that can be implemented as unitary
transformations, or partial isometries if gauge symmetries are involved. This
characterization permits to search systematically for dualities and
self-dualities in quantum models of arbitrary system size, dimensionality and
complexity, and any classical model admitting a transfer matrix representation.
Dualities like exact dimensional reduction, emergent, and gauge-reducing
dualities that solve gauge constraints can be easily understood in terms of
mappings of bond algebras. As a new example, we show that the (\mathbb{Z}_2)
Higgs model is dual to the extended toric code model {\it in any number of
dimensions}. Non-local dual variables and Jordan-Wigner dictionaries are
derived from the local mappings of bond algebras. Our bond-algebraic approach
goes beyond the standard approach to classical dualities, and could help
resolve the long standing problem of obtaining duality transformations for
lattice non-Abelian models. As an illustration, we present new dualities in any
spatial dimension for the quantum Heisenberg model. Finally, we discuss various
applications including location of phase boundaries, spectral behavior and,
notably, we show how bond-algebraic dualities help constrain and realize
fermionization in an arbitrary number of spatial dimensions.Comment: 131 pages, 22 figures. Submitted to Advances in Physics. Second
version including a new section on the eight-vertex model and the correction
of several typo
Design and construction of the MicroBooNE detector
This paper describes the design and construction of the MicroBooNE liquid
argon time projection chamber and associated systems. MicroBooNE is the first
phase of the Short Baseline Neutrino program, located at Fermilab, and will
utilize the capabilities of liquid argon detectors to examine a rich assortment
of physics topics. In this document details of design specifications, assembly
procedures, and acceptance tests are reported
State of the world’s plants and fungi 2020
Kew’s State of the World’s Plants and Fungi project provides assessments of our current knowledge of the diversity of plants and fungi on Earth, the global threats that they face, and the policies to safeguard them. Produced in conjunction with an international scientific symposium, Kew’s State of the World’s Plants and Fungi sets an important international standard from which we can annually track trends in the global status of plant and fungal diversity
Whole-genome sequencing reveals host factors underlying critical COVID-19
Critical COVID-19 is caused by immune-mediated inflammatory lung injury. Host genetic variation influences the development of illness requiring critical care1 or hospitalization2,3,4 after infection with SARS-CoV-2. The GenOMICC (Genetics of Mortality in Critical Care) study enables the comparison of genomes from individuals who are critically ill with those of population controls to find underlying disease mechanisms. Here we use whole-genome sequencing in 7,491 critically ill individuals compared with 48,400 controls to discover and replicate 23 independent variants that significantly predispose to critical COVID-19. We identify 16 new independent associations, including variants within genes that are involved in interferon signalling (IL10RB and PLSCR1), leucocyte differentiation (BCL11A) and blood-type antigen secretor status (FUT2). Using transcriptome-wide association and colocalization to infer the effect of gene expression on disease severity, we find evidence that implicates multiple genes—including reduced expression of a membrane flippase (ATP11A), and increased expression of a mucin (MUC1)—in critical disease. Mendelian randomization provides evidence in support of causal roles for myeloid cell adhesion molecules (SELE, ICAM5 and CD209) and the coagulation factor F8, all of which are potentially druggable targets. Our results are broadly consistent with a multi-component model of COVID-19 pathophysiology, in which at least two distinct mechanisms can predispose to life-threatening disease: failure to control viral replication; or an enhanced tendency towards pulmonary inflammation and intravascular coagulation. We show that comparison between cases of critical illness and population controls is highly efficient for the detection of therapeutically relevant mechanisms of disease
Alpine aquatic ecosystem conservation policy in a changing climate
Freshwater ecosystems are often of high conservation value, yet many have been degraded significantly by direct anthropogenic impacts and are further threatened by global environmental change. Traditionally, conservation science and policy has promoted principles based on preservation and restoration paradigms, which are linked to assumptions of stationarity and uniformitarianism. Adaptation requires new approaches based on flexibility, iterativity, non-linearity, and redundancy. Many high alpine river networks represent near natural, pristine river systems and important biodiversity 'hotspots' of European freshwater fauna. However, there remains a lack of guidance on alpine river conservation strategies under a changing climate at EU, regional and local levels. A critical evaluation of current conservation and adaptation principles and governance frameworks was undertaken with relation to predicted climate change impacts on freshwater ecosystems. Case studies are presented from two alpine zones in mainland Europe (the Pyrénées and the Swiss Alps). The complexity of climate change impacts on hydrological regimes, habitat and biota from both case study regions suggests that current legislative and policy mechanisms, which frame conservation approaches, need to be realigned. In particular, a shift in focus from species-centric approaches to more holistic ecosystem functioning conservation is proposed. A methodological approach is set out that may help conservationists and resource managers to both prioritise their efforts, and better predict future habitat and biotic responses to set ecological baseline conditions. Due to the complexity and limited potential for preventative intervention in these systems, conservation strategies should focus on: (i) the maintenance and enhancement of connectivity within and between alpine river basins and (ii) the control and reduction of additional anthropogenic stressors
- …