40 research outputs found
Prospectus, May 2, 2001
https://spark.parkland.edu/prospectus_2001/1015/thumbnail.jp
N-Terminal ProâB-Type Natriuretic Peptide in the Emergency Department: The ICON-RELOADED Study
Background
Contemporary reconsideration of diagnostic N-terminal proâB-type natriuretic peptide (NT-proBNP) cutoffs for diagnosis of heart failure (HF) is needed.
Objectives
This study sought to evaluate the diagnostic performance of NT-proBNP for acute HF in patients with dyspnea in the emergency department (ED) setting.
Methods
Dyspneic patients presenting to 19 EDs in North America were enrolled and had blood drawn for subsequent NT-proBNP measurement. Primary endpoints were positive predictive values of age-stratified cutoffs (450, 900, and 1,800 pg/ml) for diagnosis of acute HF and negative predictive value of the rule-out cutoff to exclude acute HF. Secondary endpoints included sensitivity, specificity, and positive (+) and negative (â) likelihood ratios (LRs) for acute HF.
Results
Of 1,461 subjects, 277 (19%) were adjudicated as having acute HF. The area under the receiver-operating characteristic curve for diagnosis of acute HF was 0.91 (95% confidence interval [CI]: 0.90 to 0.93; p < 0.001). Sensitivity for age stratified cutoffs of 450, 900, and 1,800 pg/ml was 85.7%, 79.3%, and 75.9%, respectively; specificity was 93.9%, 84.0%, and 75.0%, respectively. Positive predictive values were 53.6%, 58.4%, and 62.0%, respectively. Overall LR+ across age-dependent cutoffs was 5.99 (95% CI: 5.05 to 6.93); individual LR+ for age-dependent cutoffs was 14.08, 4.95, and 3.03, respectively. The sensitivity and negative predictive value for the rule-out cutoff of 300 pg/ml were 93.9% and 98.0%, respectively; LRâ was 0.09 (95% CI: 0.05 to 0.13).
Conclusions
In acutely dyspneic patients seen in the ED setting, age-stratified NT-proBNP cutpoints may aid in the diagnosis of acute HF. An NT-proBNP <300 pg/ml strongly excludes the presence of acute HF
Safety and Efficacy of the NVX-CoV2373 Coronavirus Disease 2019 Vaccine at Completion of the Placebo-Controlled Phase of a Randomized Controlled Trial
Acknowledgements The study and article were funded by Novavax. We would like to thank all the study participants for their commitment to this study. We also acknowledge the investigators and their study teams for their hard work and dedication. In addition, we would like to thank the National Institute for Health Research, representatives from the Department of Health and Social Care laboratories and NHS Digital and the members of the UK Vaccine Task Force. Editorial support was provided by Kelly Cameron of Ashfield MedComms, an Inizio company Funding This work was funded by Novavax, and the sponsor had primary responsibility for study design, study vaccines, protocol development, study monitoring, data management, and statistical analyses. All authors reviewed and approved the manuscript before submission. LF reports a position as a prior full-time employee, now contractor to Novavax re-imbursed hourly for work performed on this study and in analyses and drafting this report. IC reports providing medical writing support for this work as an employee of NovavaxPeer reviewedPublisher PD
Safety and efficacy of the NVX-CoV2373 coronavirus disease 2019 vaccine at completion of the placebo-controlled phase of a randomized controlled trial
Background:Â The recombinant protein-based vaccine, NVX-CoV2373, demonstrated 89.7% efficacy against coronavirus disease 2019 (COVID-19) in a phase 3, randomized, observer-blinded, placebo-controlled trial in the United Kingdom. The protocol was amended to include a blinded crossover. Data to the end of the placebo-controlled phase are reported.
Methods:Â Adults aged 18â84 years received 2 doses of NVX-CoV2373 or placebo (1:1) and were monitored for virologically confirmed mild, moderate, or severe COVID-19 (onset from 7 days after second vaccination). Participants who developed immunoglobulin G (IgG) against nucleocapsid protein but did not show symptomatic COVID-19 were considered asymptomatic. Secondary outcomes included anti-spike (S) IgG responses, wild-type virus neutralization, and T-cell responses.
Results:Â Of 15 185 participants, 13 989 remained in the per-protocol efficacy population (6989 NVX-CoV2373, 7000 placebo). At a maximum of 7.5 months (median, 4.5) postvaccination, there were 24 cases of COVID-19 among NVX-CoV2373 recipients and 134 cases among placebo recipients, a vaccine efficacy of 82.7% (95% confidence interval [CI], 73.3%â88.8%). Vaccine efficacy was 100% (95% CI, 17.9%â100.0%) against severe disease and 76.3% (95% CI, 57.4%â86.8%) against asymptomatic disease. High anti-S and neutralization responses to vaccination were evident, together with S-proteinâspecific induction of interferon-Îł secretion in peripheral blood T cells. Incidence of serious adverse events and adverse events of special interest were similar between groups.
Conclusions:Â A 2-dose regimen of NVX-CoV2373 conferred a high level of ongoing protection against asymptomatic, symptomatic, and severe COVID-19 through >6 months postvaccination. A gradual decrease of protection suggests that a booster may be indicated.
Clinical Trials Registration:Â EudraCT, 2020-004123-16
Whole-genome sequencing reveals host factors underlying critical COVID-19
Critical COVID-19 is caused by immune-mediated inflammatory lung injury. Host genetic variation influences the development of illness requiring critical care1 or hospitalization2â4 after infection with SARS-CoV-2. The GenOMICC (Genetics of Mortality in Critical Care) study enables the comparison of genomes from individuals who are critically ill with those of population controls to find underlying disease mechanisms. Here we use whole-genome sequencing in 7,491 critically ill individuals compared with 48,400 controls to discover and replicate 23 independent variants that significantly predispose to critical COVID-19. We identify 16 new independent associations, including variants within genes that are involved in interferon signalling (IL10RB and PLSCR1), leucocyte differentiation (BCL11A) and blood-type antigen secretor status (FUT2). Using transcriptome-wide association and colocalization to infer the effect of gene expression on disease severity, we find evidence that implicates multiple genesâincluding reduced expression of a membrane flippase (ATP11A), and increased expression of a mucin (MUC1)âin critical disease. Mendelian randomization provides evidence in support of causal roles for myeloid cell adhesion molecules (SELE, ICAM5 and CD209) and the coagulation factor F8, all of which are potentially druggable targets. Our results are broadly consistent with a multi-component model of COVID-19 pathophysiology, in which at least two distinct mechanisms can predispose to life-threatening disease: failure to control viral replication; or an enhanced tendency towards pulmonary inflammation and intravascular coagulation. We show that comparison between cases of critical illness and population controls is highly efficient for the detection of therapeutically relevant mechanisms of disease
Genetic mechanisms of critical illness in COVID-19.
Host-mediated lung inflammation is present1, and drives mortality2, in the critical illness caused by coronavirus disease 2019 (COVID-19). Host genetic variants associated with critical illness may identify mechanistic targets for therapeutic development3. Here we report the results of the GenOMICC (Genetics Of Mortality In Critical Care) genome-wide association study in 2,244 critically ill patients with COVID-19 from 208 UK intensive care units. We have identified and replicated the following new genome-wide significant associations: on chromosome 12q24.13 (rs10735079, PÂ =Â 1.65Â ĂÂ 10-8) in a gene cluster that encodes antiviral restriction enzyme activators (OAS1, OAS2 and OAS3); on chromosome 19p13.2 (rs74956615, PÂ =Â 2.3Â ĂÂ 10-8) near the gene that encodes tyrosine kinase 2 (TYK2); on chromosome 19p13.3 (rs2109069, PÂ =Â 3.98Â ĂÂ Â 10-12) within the gene that encodes dipeptidyl peptidase 9 (DPP9); and on chromosome 21q22.1 (rs2236757, PÂ =Â 4.99Â ĂÂ 10-8) in the interferon receptor gene IFNAR2. We identified potential targets for repurposing of licensed medications: using Mendelian randomization, we found evidence that low expression of IFNAR2, or high expression of TYK2, are associated with life-threatening disease; and transcriptome-wide association in lung tissue revealed that high expression of the monocyte-macrophage chemotactic receptor CCR2 is associated with severe COVID-19. Our results identify robust genetic signals relating to key host antiviral defence mechanisms and mediators of inflammatory organ damage in COVID-19. Both mechanisms may be amenable to targeted treatment with existing drugs. However, large-scale randomized clinical trials will be essential before any change to clinical practice
Common, low-frequency, rare, and ultra-rare coding variants contribute to COVID-19 severity
The combined impact of common and rare exonic variants in COVID-19 host genetics is currently insufficiently understood. Here, common and rare variants from whole-exome sequencing data of about 4000 SARS-CoV-2-positive individuals were used to define an interpretable machine-learning model for predicting COVID-19 severity. First, variants were converted into separate sets of Boolean features, depending on the absence or the presence of variants in each gene. An ensemble of LASSO logistic regression models was used to identify the most informative Boolean features with respect to the genetic bases of severity. The Boolean features selected by these logistic models were combined into an Integrated PolyGenic Score that offers a synthetic and interpretable index for describing the contribution of host genetics in COVID-19 severity, as demonstrated through testing in several independent cohorts. Selected features belong to ultra-rare, rare, low-frequency, and common variants, including those in linkage disequilibrium with known GWAS loci. Noteworthily, around one quarter of the selected genes are sex-specific. Pathway analysis of the selected genes associated with COVID-19 severity reflected the multi-organ nature of the disease. The proposed model might provide useful information for developing diagnostics and therapeutics, while also being able to guide bedside disease management. © 2021, The Author(s)
Safety and efficacy of the NVX-CoV2373 coronavirus disease 2019 vaccine at completion of the placebo-controlled phase of a randomized controlled trial
Background:
The recombinant protein-based vaccine, NVX-CoV2373, demonstrated 89.7% efficacy against coronavirus disease 2019 (COVID-19) in a phase 3, randomized, observer-blinded, placebo-controlled trial in the United Kingdom. The protocol was amended to include a blinded crossover. Data to the end of the placebo-controlled phase are reported.
Methods:
Adults aged 18â84â
years received 2 doses of NVX-CoV2373 or placebo (1:1) and were monitored for virologically confirmed mild, moderate, or severe COVID-19 (onset from 7 days after second vaccination). Participants who developed immunoglobulin G (IgG) against nucleocapsid protein but did not show symptomatic COVID-19 were considered asymptomatic. Secondary outcomes included anti-spike (S) IgG responses, wild-type virus neutralization, and T-cell responses.
Results:
Of 15 185 participants, 13 989 remained in the per-protocol efficacy population (6989 NVX-CoV2373, 7000 placebo). At a maximum of 7.5 months (median, 4.5) postvaccination, there were 24 cases of COVID-19 among NVX-CoV2373 recipients and 134 cases among placebo recipients, a vaccine efficacy of 82.7% (95% confidence interval [CI], 73.3%â88.8%). Vaccine efficacy was 100% (95% CI, 17.9%â100.0%) against severe disease and 76.3% (95% CI, 57.4%â86.8%) against asymptomatic disease. High anti-S and neutralization responses to vaccination were evident, together with S-proteinâspecific induction of interferon-Îł secretion in peripheral blood T cells. Incidence of serious adverse events and adverse events of special interest were similar between groups.
Conclusions:
A 2-dose regimen of NVX-CoV2373 conferred a high level of ongoing protection against asymptomatic, symptomatic, and severe COVID-19 through >6â
months postvaccination. A gradual decrease of protection suggests that a booster may be indicated
Safety, immunogenicity, and efficacy of a COVID-19 vaccine (NVX-CoV2373) co-administered with seasonal influenza vaccines: an exploratory substudy of a randomised, observer-blinded, placebo-controlled, phase 3 trial
Background: Safety and immunogenicity of COVID-19 vaccines when co-administered with influenza vaccines have not yet been reported.
Methods: A sub-study on influenza vaccine co-administration was conducted as part of the phase 3 randomised trial of NVX-CoV2373âs safety and efficacy; ~400 participants meeting main study entry criteria, with no contraindications to influenza vaccination, were enroled. After randomisation to receive NVX-CoV2373 or placebo, sub-study participants received an open-label influenza vaccine at the same time as the first dose of NVX-CoV2373. Reactogenicity was evaluated for 7 days post-vaccination plus monitoring for unsolicited adverse events (AEs), medically-attended AEs (MAAEs), and serious AEs (SAEs). Vaccine efficacy against COVID-19 was assessed.
Findings: Sub-study participants were younger (median age 39; 6.7 % â„65 years), more racially diverse, and had fewer comorbid conditions than main study participants. Reactogenicity events more common in co-administration group included tenderness (70.1% vs 57.6%) or pain (39.7% vs 29.3%) at injection site, fatigue (27.7% vs 19.4%), and muscle pain (28.3% vs 21.4%). Rates of unsolicited AEs, MAAEs, and SAEs were low and balanced between the two groups. Co-administration resulted in no change to influenza vaccine immune response, while a reduction in antibody responses to the NVX-CoV2373 vaccine was noted. Vaccine efficacy against COVID-19 was 87.5% (95% CI: -0.2, 98.4) in those 18-<65 years in the sub-study while efficacy in the main study was 89.8% (95% CI: 79.7, 95.5).Â
Interpretation: This is the first study to demonstrate safety, immunogenicity, and efficacy of a COVID-19 vaccine when co-administered with influenza vaccines