5 research outputs found

    Effect of maturity and harvest season on antioxidant activity, phenolic compounds and ascorbic acid of Morinda citrifolia L. (noni) grown in Mexico (with track change)

    Get PDF
    Antioxidant activity diphenylpicrylhydrazyl (DPPH), the ferric-reducing antioxidant power assay (FRAP), nitric oxide (NO)], total polyphenols, phenolic compounds and ascorbic acid of Morinda citrifolia L. fruits were investigated as a function of maturity and three seasons patterns in Mexico. Maturity was evaluated in early, middle, sub-mature and mature stages (1 to 4) according to color and firmness. Significant differences were observed in the antioxidant activities and chemical composition of the fruits at different maturity and seasons. During February-March and May- June, fruits from middle and mature stages exhibited the highest antioxidant activities and total polyphenol content compared to other stages, while in November, ripe fruits reached the greatest antioxidant efficacy, total phenolic and ascorbic acid contents. Total polyphenols and ascorbic acid reached the highest amounts during May-June, although antioxidant activities were moderate compared to greater values in February-March or November depending upon maturity. The ability of M. citrifolia fruits to inhibit NO production by LPSactivated RAW 264.7 cells was quite comparable to or higher than N-nitro-L-arginine methyl ester (LNAME). This work shows that season and maturity stages have a profound effect on the antioxidant capacity, phenols and ascorbic acid of M. Citrifolia fruits.Keywords: Morinda citrifolia, diphenylpicrylhydrazyl (DPPH) radical scavenging, maturity, seasons, total polyphenol and phenolics compounds, reducing power, ascorbic acid, scavenging nitric oxide.African Journal of Biotechnology Vol. 12(29), pp. 4630-463

    Notes for genera – Ascomycota

    No full text
    Knowledge of the relationships and thus the classification of fungi, has developed rapidly with increasingly widespread use of molecular techniques, over the past 10--15 years, and continues to accelerate. Several genera have been found to be polyphyletic, and their generic concepts have subsequently been emended. New names have thus been introduced for species which are phylogenetically distinct from the type species of particular genera. The ending of the separate naming of morphs of the same species in 2011, has also caused changes in fungal generic names. In order to facilitate access to all important changes, it was desirable to compile these in a single document. The present article provides a list of generic names of Ascomycota (approximately 6500 accepted names published to the end of 2016), including those which are lichen-forming. Notes and summaries of the changes since the last edition of `Ainsworth Bisby's Dictionary of the Fungi' in 2008 are provided. The notes include the number of accepted species, classification, type species (with location of the type material), culture availability, life-styles, distribution, and selected publications that have appeared since 2008. This work is intended to provide the foundation for updating the ascomycete component of the ``Without prejudice list of generic names of Fungi'' published in 2013, which will be developed into a list of protected generic names. This will be subjected to the XIXth International Botanical Congress in Shenzhen in July 2017 agreeing to a modification in the rules relating to protected lists, and scrutiny by procedures determined by the Nomenclature Committee for Fungi (NCF). The previously invalidly published generic names Barriopsis, Collophora (as Collophorina), Cryomyces, Dematiopleospora, Heterospora (as Heterosporicola), Lithophila, Palmomyces (as Palmaria) and Saxomyces are validated, as are two previously invalid family names, Bartaliniaceae and Wiesneriomycetaceae. Four species of Lalaria, which were invalidly published are transferred to Taphrina and validated as new combinations. Catenomycopsis Tibell Constant. is reduced under Chaenothecopsis Vain., while Dichomera Cooke is reduced under Botryosphaeria Ces. De Not. (Art. 59)

    ESICM LIVES 2016: part two : Milan, Italy. 1-5 October 2016.

    Get PDF
    Meeting abstrac
    corecore