7,200 research outputs found
Orbital structure of the GJ876 extrasolar planetary system, based on the latest Keck and HARPS radial velocity data
We use full available array of radial velocity data, including recently
published HARPS and Keck observatory sets, to characterize the orbital
configuration of the planetary system orbiting GJ876. First, we propose and
describe in detail a fast method to fit perturbed orbital configuration, based
on the integration of the sensitivity equations inferred by the equations of
the original -body problem. Further, we find that it is unsatisfactory to
treat the available radial velocity data for GJ876 in the traditional white
noise model, because the actual noise appears autocorrelated (and demonstrates
non-white frequency spectrum). The time scale of this correlation is about a
few days, and the contribution of the correlated noise is about 2 m/s (i.e.,
similar to the level of internal errors in the Keck data). We propose a
variation of the maximum-likelihood algorithm to estimate the orbital
configuration of the system, taking into account the red noise effects. We
show, in particular, that the non-zero orbital eccentricity of the innermost
planet \emph{d}, obtained in previous studies, is likely a result of
misinterpreted red noise in the data. In addition to offsets in some orbital
parameters, the red noise also makes the fit uncertainties systematically
underestimated (while they are treated in the traditional white noise model).
Also, we show that the orbital eccentricity of the outermost planet is actually
ill-determined, although bounded by . Finally, we investigate
possible orbital non-coplanarity of the system, and limit the mutual
inclination between the planets \emph{b} and \emph{c} orbits by
, depending on the angular position of the mutual orbital
nodes.Comment: 36 pages, 11 figures, 3 tables; Accepted to Celestial Mechanics and
Dynamical Astronom
Substrate Deformation Predicts Neuronal Growth Cone Advance
AbstractAlthough pulling forces have been observed in axonal growth for several decades, their underlying mechanisms, absolute magnitudes, and exact roles are not well understood. In this study, using two different experimental approaches, we quantified retrograde traction force in Aplysia californica neuronal growth cones as they develop over time in response to a new adhesion substrate. In the first approach, we developed a novel method, to our knowledge, for measuring traction forces using an atomic force microscope (AFM) with a cantilever that was modified with an Aplysia cell adhesion molecule (apCAM)-coated microbead. In the second approach, we used force-calibrated glass microneedles coated with apCAM ligands to guide growth cone advance. The traction force exerted by the growth cone was measured by monitoring the microneedle deflection using an optical microscope. Both approaches showed that Aplysia growth cones can develop traction forces in the 100â102 nN range during adhesion-mediated advance. Moreover, our results suggest that the level of traction force is directly correlated to the stiffness of the microneedle, which is consistent with a reinforcement mechanism previously observed in other cell types. Interestingly, the absolute level of traction force did not correlate with growth cone advance toward the adhesion site, but the amount of microneedle deflection did. In cases of adhesion-mediated growth cone advance, the mean needle deflection was 1.05 ± 0.07 Όm. By contrast, the mean deflection was significantly lower (0.48 ± 0.06 ÎŒm) when the growth cones did not advance. Our data support a hypothesis that adhesion complexes, which can undergo micron-scale elastic deformation, regulate the coupling between the retrogradely flowing actin cytoskeleton and apCAM substrates, stimulating growth cone advance if sufficiently abundant
Vapour reactive distillation process for hydrogen production by hi decomposition from hi-i2-h2o solutions
In this contribution, a sequential and hierarchical approach for the feasibility analysis and the preliminary design of reactive distillation columns is extended to systems involving vapour phase chemical reaction and is successfully applied to the HI vapour phase decomposition to produce H2.
The complex phase and physico chemical behaviour of the quaternary HI-H2-I2-H2O system is represented by the Neumannâs thermodynamic model and instantaneous vapour phase chemical equilibrium is assumed.
Then, from minimal information concerning the physicochemical properties of the system, three successive steps lead to the design of the unit and the specification of its operating conditions: the feasibility analysis, the synthesis and the design step. First, the analysis of reactive condensation curve map method (rCCM), assuming infinite internal liquid and vapour flow rate and infinite reflux ratio, is used to assess the feasibility of the process. It determines the column structure and estimates the attainable compositions. These results are used as inputs data for the synthesis step. Based on the boundary value design method (BVD), considering finite internal liquid and vapour flow rate and finite reflux ratio while neglecting all thermal effects and assuming a constant heat of vaporisation, the synthesis step provides more precise information about the process configuration (minimum reflux ratio, number of theoretical stages, localisation and number of reactive plates, position of the feed plate). Finally, the BVD method results are used to initialise rigorous simulations, based on an equilibrium stage model with energy balance, to estimate the reflux ratio taking into account thermal effect on the process.
The resulting design configuration consists in a single feed and entirely reactive distillation column. The column operates under a pressure of 22 bars. The feed of the reactive distillation column, coming from the Bunsen reaction section [xHI=0.10; xI2=0.39 xH2O=0.51], is at its boiling temperature. The residue consists in pure iodine. Water and produced hydrogen are recovered at the distillate. The column operates at a reflux ratio of 5 and is composed of 11 theoretical plates including the reboiler and the partial condenser with the feed at the stage 10 (counted downwards). The obtained HI dissociation yield is 99.6%
Steel in a circular economy: global implications of a green shift in China
China is increasingly known for its ambitions towards an âecological civilisationâ and a circular economy. Our article assesses the implications of an accelerated shift towards steel recycling in China. Given the relevance of steel for development worldwide as well as its environmental intensity, any such shift is likely to have implications for competitiveness in China and beyond. Recent findings suggest that China could take advantage of an increasing availability of obsolete steel scrap in the coming decades, moving towards more circular, and potentially greener, steel production. We assess such industrial restructuring from an economic perspective and address the competitiveness of China relative to other developing and industrialised regions. The analysis uses a novel global economy-wide modelling framework (ENGAGE-materials) to assess the aggregate and sector-level impacts of different scrap use options in China in the 2019â2030 time frame. The results show moderate GDP gains for China of cumulated USD 589 billion in GDP gains by 2030 despite a replacement of primary steel capacity. A more comprehensive industrial policy mix aimed at improved recycling practices and more adaptive downstream sectors could increase gains to USD 819 billion. The international implications are mixed, with losses for iron ore producers (Australia, Brazil and India) and gains for most developing countries benefiting from lower steel prices. Another result is an increasing demand for coal in electricity production if such a shift wouldnât be aligned with an accelerated energy transition towards low carbon pathways. We discuss policy implications of such alignment, potential co-benefits, and a need for green international partnerships
The HARPS search for southern extra-solar planets XIX. Characterization and dynamics of the GJ876 planetary system
Precise radial-velocity measurements for data acquired with the HARPS
spectrograph infer that three planets orbit the M4 dwarf star GJ876. In
particular, we confirm the existence of planet "d", which orbits every 1.93785
days. We find that its orbit may have significant eccentricity (e=0.14), and
deduce a more accurate estimate of its minimum mass of 6.3 Earth masses.
Dynamical modeling of the HARPS measurements combined with literature
velocities from the Keck Observatory strongly constrain the orbital
inclinations of the "b" and "c" planets. We find that i_b = 48.9 degrees and
i_c = 48.1 degrees, which infers the true planet masses of M_b = 2.64 Jupiter
masses and M_c = 0.83 Jupiter masses, respectively. Radial velocities alone, in
this favorable case, can therefore fully determine the orbital architecture of
a multi-planet system, without the input from astrometry or transits.
The orbits of the two giant planets are nearly coplanar, and their 2:1 mean
motion resonance ensures stability over at least 5 Gyr. The libration amplitude
is smaller than 2 degrees, suggesting that it was damped by some dissipative
process during planet formation. The system has space for a stable fourth
planet in a 4:1 mean motion resonance with planet "b", with a period around 15
days. The radial velocity measurements constrain the mass of this possible
additional planet to be at most that of the Earth.Comment: 10 pages, 10 figures, accepted for publication in Astronomy &
Astrophysic
Architecture of a Silicon Strip Beam Position Monitor
A collaboration between Fermilab and the Institute for High Energy Physics
(IHEP), Beijing, has developed a beam position monitor for the IHEP test beam
facility. This telescope is based on 5 stations of silicon strip detectors
having a pitch of 60 microns. The total active area of each layer of the
detector is about 12x10 cm2. Readout of the strips is provided through the use
of VA1` ASICs mounted on custom hybrid printed circuit boards and interfaced to
Adapter Cards via copper-over-kapton flexible circuits. The Adapter Cards
amplify and level-shift the signal for input to the Fermilab CAPTAN data
acquisition nodes for data readout and channel configuration. These nodes
deliver readout and temperature data from triggered events to an analysis
computer over gigabit Ethernet links.Comment: Submitted to TWEPP 201
Early Assessment of Tumor Response to Radiation Therapy using High-Resolution Quantitative Microvascular Ultrasound Imaging
Measuring changes in tumor volume using anatomical imaging weeks to months post radiation therapy (RT) is currently the clinical standard for indicating treatment response to RT. For patients whose tumors do not respond successfully to treatment, this approach is suboptimal as timely modification of the treatment approach may lead to better clinical outcomes. We propose to use tumor microvasculature as a biomarker for early assessment of tumor response to RT. Acoustic angiography is a novel contrast ultrasound imaging technique that enables high-resolution microvascular imaging and has been shown to detect changes in microvascular structure due to cancer growth. Data suggest that acoustic angiography can detect longitudinal changes in the tumor microvascular environment that correlate with RT response
- âŠ