28 research outputs found

    Using CASIMIR-Vegetation model in the context of modeling riparian woods and fish species to support a holistic approach for environmental flows to be used on river management and conservation

    Get PDF
    The CASiMiR-vegetation model is a software that recreates the physical processes influencing the survival and recruitment of riparian vegetation, based on the relationship between ecologically relevant flow regime components and riparian vegetation metrics that reflect the vegetation’s responses to flow regime change. Working at a flow response guild level, this tool outperforms equivalent models by overriding various restrictions of the conventional modeling approaches. The potential of the CASiMiR-vegetation model is revealed in its application to different case studies during the development of a holistic approach to determine environmental flows in lowland Mediterranean rivers, based on woody riparian vegetation and fish species. Various modeling circumstances are described where CASiMiR-vegetation model was used with the purpose of sustaining the research addressing the thesis objectives. The main findings already accomplished in this research are highlighted to illustrate the outcomes that can be attained from the use of such a model

    Comparison and Validation of Hydrological E-Flow Methods through Hydrodynamic Modelling

    Get PDF
    Flow regime determines physical habitat conditions and local biotic configuration. The development of environmental flow guidelines to support the river integrity is becoming a major concern in water resources management. In this study, we analysed two sites located in southern part of Portugal, respectively at Odelouca and Ocreza Rivers, characterised by the Mediterranean climate. Both rivers are almost in pristine condition, not regulated by dams or other diversion construction. This study presents an analysis of the effect on fish habitat suitability by the implementation of different hydrological e-flow methods. To conduct this study we employed certain hydrological e-flow methods recommended by the European Small Hydropower Association (ESHA). River hydrology assessment was based on approximately 30 years of mean daily flow data, provided by the Portuguese Water Information System (SNIRH). The biological data, bathymetry, physical and hydraulic features, and the Habitat Suitability Index for fish species were collected from extensive field works. We followed the Instream Flow Incremental Methodology (IFIM) to assess the flow-habitat relationship taking into account the habitat suitability of different instream flow releases. Initially, we analysed fish habitat suitability based on natural conditions, and we used it as reference condition for other scenarios considering the chosen hydrological e-flow methods. We accomplished the habitat modelling through hydrodynamic analysis by using River-2D model. The same methodology was applied to each scenario by considering as input the e-flows obtained from each of the hydrological method employed in this study. This contribution shows the significance of ecohydrological studies in establishing a foundation for water resources management actions

    Importance of considering riparian vegetation requirements for the long-term efficiency of environmental flows in aquatic microhabitats

    Get PDF
    Environmental flows remain biased toward the traditional biological group of fish species. Consequently, these flows ignore the inter-annual flow variability that rules species with longer lifecycles and therefore disregard the long-term perspective of the riverine ecosystem. We analyzed the importance of considering riparian requirements for the long-term efficiency of environmental flows. For that analysis, we modeled the riparian vegetation development for a decade facing different environmental flows in two case studies. Next, we assessed the corresponding fish habitat availability of three common fish species in each of the resulting riparian landscape scenarios. Modeling results demonstrated that the environmental flows disregarding riparian vegetation requirements promoted riparian degradation, particularly vegetation encroachment. Such circumstance altered the hydraulic characteristics of the river channel where flow depths and velocities underwent local changes of up to 10 cm and 40 cm s1, respectively. Accordingly, after a decade of this flow regime, the available habitat area for the considered fish species experienced modifications of up to 110% when compared to the natural habitat. In turn, environmental flows regarding riparian vegetation requirements were able to maintain riparian vegetation near natural standards, thereby preserving the hydraulic characteristics of the river channel and sustaining the fish habitat close to the natural condition. As a result, fish habitat availability never changed more than 17% from the natural habitatinfo:eu-repo/semantics/publishedVersio

    Using CASiMiR-vegetation model to establish riparian vegetation disturbance requirements

    Get PDF
    The disturbance requirements of riparian vegetation were determined in two Mediterranean rivers based on riparian vegetation modeling. The assessment of the riparian vegetation disturbance requirements were consistent in selecting the best disturbance regime. Such outcome may suggest the probable applicability of this approach to rivers in general and the possibility to preserve artificially the sustainability of the riparian communities in regulated rivers

    Determinação de um regime de caudais ecológicos a jusante do empreendimento do Alvito. Relatório Final

    Get PDF
    Estudo realizado pelo Instituto Superior de Agronomia para a ATKINS, no âmbito do Protocolo de Colaboração ATKINS – ISA-ADISA, de 19 de Junho de 2012O estudo que se apresenta tem como objetivo a definição dos regimes de caudais ecológicos para o aproveitamento hidroelétrico do Alvito, localizado no rio Ocreza, e possíveis futuros aproveitamentos hidroelétricos na ribeira de Alvito. Os regimes foram propostos para cada um dos cursos de água referidos, com base na informação recolhida e modelada em locais de estudo representativos dos cursos de água referidos, tendo ainda sido validados por modelações num local de estudo independente localizado a jusante dos anteriores. Os regimes de caudais propostos neste documento apresentam um carácter inovador e único em Portugal, resultando de uma metodologia que considera não só os requisitos de comunidades aquáticas mas também ripárias, suportada pela modelação matemática de ambas as comunidades e conferindo uma maior aproximação holística ao sistema fluvial. A metodologia apresentada proporciona assim um alargamento do espectro de atuação dos caudais ecológicos apresentados atualmente, considerando para além da variação intra-anual do regime hidrológico natural retratada pela fauna piscícola, a sua variação interanual, cuja influência no ecossistema fluvial é espelhada pela vegetação ripária. Nos capítulos que se seguem relatam-se os trabalhos efetuados com vista a produzir os regimes propostos, desde os levantamentos de campo e amostragens biológicas até aos resultados obtidos nas modelações efetuadas. Por fim, o presente relatório culmina na construção dos regimes de caudais ecológicos com planificação decénia, conjugando regimes de caudais mensais com cheias de período de retorno plurianualN/

    Atualização do Habitat 91E0* na Rede Natura em Portugal Continental: resultados obtidos no âmbito do projecto LIFE Fluvial

    Get PDF
    Este documento, relativo à ação A1 do projeto LIFE FLUVIAL, contem a atualização da informação sobre o habitat 91E0* nas áreas pertencentes à Rede Natura 2000 em Portugal Continental. O documento tem o intuito de melhorar o conhecimento sobre a distribuição observada e provável do habitat, incluindo a) uma atualização da presença observada do habitat com base em varias fontes de informação, tais como estudos prévios, trabalhos de cartografia, projetos de investigação e técnicos, registos de herbários, bases de dados florísticas e de vegetação; e b) uma determinação de locais com elevada probabilidade de ocorrência do Habitat 91E0* com base nos modelos desenvolvidos no projeto RIPLANTE nas áreas classificadas na rede natura 2000 em Portugal Continental. A combinação das duas componentes será fundamental para colmatar as lacunas existentes quanto à distribuição deste habitat prioritário e contribuir para a sua conservação no âmbito da Rede Natura 2000.info:eu-repo/semantics/publishedVersio

    Aquatic biodiversity and quality of streams in certified eucalypt plantations in central Portugal

    Get PDF
    Em Portugal, mais de 150.000 ha de plantações de eucalipto (Eucalyptus globulus) são já geridas em conformidade com os sistemas internacionais de certificação. O objetivo deste trabalho foi o de avaliar a biodiversidade e a qualidade ecológica de pequenos rios associados a este tipo de povoamentos, usando diversas comunidades aquáticas – peixes, anfíbios e macroinvertebrados – bem como um índice de condição morfológica fluvial (qualidade do leito e margens). Este estudo foi conduzido em dois cursos de água localizados na zona centro de Portugal, a ribeira da Foz (média dimensão e regime hidrológico permanente) e a ribeira dos Rouxinóis (pequena dimensão e regime intermitente), com envolventes dominadas por plantações certificadas de eucalipto, e por isso com zonas ripícolas bem conservadas. A ribeira da Foz revelou associações piscícolas com elevada riqueza específica e que, embora dominadas por uma espécie exótica (Gobio lozanoi), incluíram várias espécies ameaçadas. A anfíbiofauna apresentou‑se contudo pouco abundante, muito provavelmente devido à grande diversidade e densidade piscícola e à presença significativa do lagostim-vermelho-do-Louisiana (Procambarus clarkii). Neste sistema, registou-se ainda uma boa qualidade da condição morfológica, bem como uma elevada diversidade da comunidade de macroinvertebrados, reflexo de boa qualidade da água. Na ribeira dos Rouxinóis a comunidade piscícola foi próxima da potencial para este tipo de rios, e a anfíbiofauna apresentou-se diversa e abundante. No entanto, a comunidade de macroinvertebrados revelou-se muito pouco diversa, provavelmente devido à menor riqueza de habitats ou às elevadas condutividades aí verificadas. Os resultados demonstraram que rios associados a eucaliptais certificados podem apresentar boa qualidade ecológica e uma significativa biodiversidade aquáticainfo:eu-repo/semantics/publishedVersio

    Multi-biologic group analysis for an ecosystem response to longitudinal river regulation gradients

    Get PDF
    This work assesses the effects of river regulation on the diversity of different instream and riparian biological communities along a relieve gradient of disturbance in regulated rivers. Two case studies in Portugal were used, with different river regulation typology (downstream of run-of-river and reservoir dams), where regulated and free-flowing river stretches were surveyed for riparian vegetation, macrophytes, bryophytes, macroalgae, diatoms and macroinvertebrates. The assessment of the regulation effects on biological communities was approached by both biological and functional diversity analysis. Results of this investigation endorse river regulation as a major factor differentiating fluvial biological communities through an artificial environmental filtering that governs species assemblages by accentuating species traits related to river regulation tolerance. Communities' response to regulation gradient seem to be similar and insensitive to river regulation typology. Biological communities respond to this regulation gradient with different sensibilities and rates of response, with riparian vegetation and macroinvertebrates being the most responsive to river regulation and its gradient. Richness appears to be the best indicator for general fluvial ecological quality facing river regulation. Nevertheless, there are high correlations between the biological and functional diversity indices of different biological groups, which denotes biological connections indicative of a cascade of effects leading to an indirect influence of river regulation even on non-responsive facets of communities' biological and functional diversities. These results highlight the necessary holistic perspective of the fluvial system when assessing the effects of river regulation and the proposal of restoration measures.publishe

    Passability of potamodromous species through a fish lift at a large hydropower plant (Touvedo, Portugal)

    Get PDF
    River fragmentation by large hydropower plants (LHP) has been recognized as a major threat for potamodromous fish. Fishways have thus been built to partially restore connectivity, with fish lifts representing the most cost-effective type at high head obstacles. This study assessed the effectiveness with which a fish lift in a LHP on the River Lima (Touvedo, Portugal), allows potamodromous fish—Iberian barbel (Luciobarbus bocagei), Northern straight-mouth nase (Pseudochondrostoma duriense) and brown trout (Salmo trutta fario)- to migrate upstream. Most fish (79.5%) used the lift between summer and early-fall. Water temperature was the most significant predictor of both cyprinids’ movements, whereas mean daily flow was more important for trout. Movements differed according to peak-flow magnitude: nase (67.8%) made broader use of the lift in the absence of turbined flow, whereas a relevant proportion of barbel (44.8%) and trout (44.2%) passed when the powerhouse was operating at half (50 m3s-1) and full-load (100 m3s-1), respectively. Size-selectivity found for barbel and trout could reflect electrofishing bias towards smaller sizes. The comparison of daily abundance patterns in the river with fish lift records allowed the assessment of the lift’s effcacy, although biological requirements of target species must be considered. Results are discussed in the context of management strategies, with recommendations for future studiesinfo:eu-repo/semantics/publishedVersio

    Modeling the evolution of riparian woodlands facing climate change in three European rivers with contrasting flow regimes

    Get PDF
    Global circulation models forecasts indicate a future temperature and rainfall pattern modification worldwide. Such phenomena will become particularly evident in Europe where climate modifications could be more severe than the average change at the global level. As such, river flow regimes are expected to change, with resultant impacts on aquatic and riparian ecosystems. Riparian woodlands are among the most endangered ecosystems on earth and provide vital services to interconnected ecosystems and human societies. However, they have not been the object of many studies designed to spatially and temporally quantify how these ecosystems will react to climate change-induced flow regimes. Our goal was to assess the effects of climate-changed flow regimes on the existing riparian vegetation of three different European flow regimes. Cases studies were selected in the light of the most common watershed alimentation modes occurring across European regions, with the objective of appraising expected alterations in the riparian elements of fluvial systems due to climate change. Riparian vegetation modeling was performed using the CASiMiR-vegetation model, which bases its computation on the fluvial disturbance of the riparian patch mosaic. Modeling results show that riparian woodlands may undergo not only at least moderate changes for all flow regimes, but also some dramatic adjustments in specific areas of particular vegetation development stages. There are circumstances in which complete annihilation is feasible. Pluvial flow regimes, like the ones in southern European rivers, are those likely to experience more pronounced changes. Furthermore, regardless of the flow regime, younger and more water-dependent individuals are expected to be the most affected by climate change.This work was supported by the IWRM Era-Net Funding Initiative through the RIPFLOW project (references ERAC-CT-2005-026025, ERA-IWRM/0001/2008, CGL2008-03076-E/BTE), http://www.old.iwrm-net.eu/spip.php. Rui Rivaes benefited from a PhD grant sponsored by UTL - Universidade Tecnica de Lisboa (www.utl.pt) and Patricia Maria Rodriguez-Gonzalez benefited from a post-doctoral grant sponsored by FCT - Fundacao para a Ciencia e Tecnologia (www.fct.pt) (SFRH/BPD/47140/2008). The Spanish team would like to thank the Spanish Ministry of the Economy and Competitiveness the support provided through the SCARCE project (Consolider-Ingenio 2010 CSD2009-00065). The funders had no role in study design, data collection and analysis, decision to publish, or preparation of the manuscript. Environmental Consulting Klagenfurt provided support in the form of salaries for authors EP and GE, but did not have any additional role in the study design, data collection and analysis, decision to publish, or preparation of the manuscript. The specific roles of these authors are articulated in the `author contributions' section.Rivaes, R.; Rodríguez-González, P.; Ferreira, MT.; Pinheiro, A.; Politti, E.; Egger, G.; García-Arias, A.... (2014). Modeling the evolution of riparian woodlands facing climate change in three European rivers with contrasting flow regimes. PLoS ONE. 9(10):1-14. https://doi.org/10.1371/journal.pone.0110200S114910Bach, W. (1976). Global air pollution and climatic change. Reviews of Geophysics, 14(3), 429. doi:10.1029/rg014i003p00429Benton GS (1970) Carbon dioxide and its role in climate change. National Academy of Sciences. pp. 898–899.Hansen, J., Johnson, D., Lacis, A., Lebedeff, S., Lee, P., Rind, D., & Russell, G. (1981). Climate Impact of Increasing Atmospheric Carbon Dioxide. Science, 213(4511), 957-966. doi:10.1126/science.213.4511.957Lovelock, J. E. (1971). Air pollution and climatic change. Atmospheric Environment (1967), 5(6), 403-411. doi:10.1016/0004-6981(71)90143-0IPCC (2008) Climate change 2007: Synthesis Report. Contribution of Working Groups I, II, and III to the Fourth Assessment Report of the Intergovernmental Panel on Climate Change; Team CW, Pachauri RK, Reisinger A, editors. Geneva, Switzerland: Intergovernmental Panel on Climate Change. 104 p.Meehl GA, Stocker TF, Collins WD, Friedlingstein P, Gaye AT, et al.. (2007) Global Climate Projections. In: Solomon S, Qin D, Manning M, Chen Z, Marquis M, et al.., editors. Climate Change 2007: The Physical Science Basis Contribution ofWorking Group I to the Fourth Assessment Report of the Intergovernmental Panel on Climate Change. Cambridge, United Kingdom and New York, NY, USA: Cambridge University Press. pp. 747–845.Alcamo J, Moreno JM, Nováky B, Bindi M, Corobov R, et al.. (2007) Europe. In: Parry ML, Canziani OF, Palutikof JP, van der Linden PJ, Hanson CE, editors. Climate Change 2007: Impacts, Adaptation and Vulnerability Contribution of Working Group II to the Fourth Assessment Report of the Intergovernmental Panel on Climate Change. Cambridge: Cambridge University Press. pp. 541–580.Christensen, J. H., & Christensen, O. B. (2007). A summary of the PRUDENCE model projections of changes in European climate by the end of this century. Climatic Change, 81(S1), 7-30. doi:10.1007/s10584-006-9210-7Christensen JH, Hewitson B, Busuioc A, Chen A, Gao X, et al.. (2007) Regional Climate Projections. In: Solomon S, Qin D, Manning M, Chen Z, Marquis M, et al.., editors. Climate Change 2007: The Physical Science Basis Contribution of Working Group I to the Fourth Assessment Report of the Intergovernmental Panel on Climate Change. Cambridge, United Kingdon and New York, NY, USA: Cambridge University Press. pp. 848–940.Schneider, C., Laizé, C. L. R., Acreman, M. C., & Flörke, M. (2013). How will climate change modify river flow regimes in Europe? Hydrology and Earth System Sciences, 17(1), 325-339. doi:10.5194/hess-17-325-2013Nijssen, B., O’Donnell, G. M., Hamlet, A. F., & Lettenmaier, D. P. (2001). Climatic Change, 50(1/2), 143-175. doi:10.1023/a:1010616428763Serrat-Capdevila, A., Valdés, J. B., Pérez, J. G., Baird, K., Mata, L. J., & Maddock, T. (2007). Modeling climate change impacts – and uncertainty – on the hydrology of a riparian system: The San Pedro Basin (Arizona/Sonora). Journal of Hydrology, 347(1-2), 48-66. doi:10.1016/j.jhydrol.2007.08.028Serrat-Capdevila, A., Scott, R. L., James Shuttleworth, W., & Valdés, J. B. (2011). Estimating evapotranspiration under warmer climates: Insights from a semi-arid riparian system. Journal of Hydrology, 399(1-2), 1-11. doi:10.1016/j.jhydrol.2010.12.021Verzano K, Menzel L (2007) Snow conditions in mountains and climate change - a global view. In: Marks D, Hock R, Lehning M, Hayashi M, Gurney R, editors; Perugia, IT. IAHS Proceedings and Reports. pp. 147–154.ALCAMO, J., FLÖRKE, M., & MÄRKER, M. (2007). Future long-term changes in global water resources driven by socio-economic and climatic changes. Hydrological Sciences Journal, 52(2), 247-275. doi:10.1623/hysj.52.2.247Murray, S. J., Foster, P. N., & Prentice, I. C. (2012). Future global water resources with respect to climate change and water withdrawals as estimated by a dynamic global vegetation model. Journal of Hydrology, 448-449, 14-29. doi:10.1016/j.jhydrol.2012.02.044Poff, N. L., Allan, J. D., Bain, M. B., Karr, J. R., Prestegaard, K. L., Richter, B. D., … Stromberg, J. C. (1997). The Natural Flow Regime. BioScience, 47(11), 769-784. doi:10.2307/1313099Lloyd NJ, Quinn G, Thoms MC, Arthington AH, Gawne B, et al.. (2004) Does flow modification cause geomorphological and ecological response in rivers? A literature review from an Australian perspective. Technical report 1/2004. Canberra, Australia: CRC for Freshwater Ecology. 0975164202. 57 p. http://www.library.adelaide.edu.au/cgi-bin/director?id=V1114450Jenkins, M. (2003). Prospects for Biodiversity. Science, 302(5648), 1175-1177. doi:10.1126/science.1088666Costanza, R., d’ Arge, R., de Groot, R., Farber, S., Grasso, M., Hannon, B., … van den Belt, M. (1997). The value of the world’s ecosystem services and natural capital. Nature, 387(6630), 253-260. doi:10.1038/387253a0Perry, L. G., Andersen, D. C., Reynolds, L. V., Nelson, S. M., & Shafroth, P. B. (2011). Vulnerability of riparian ecosystems to elevated CO 2 and climate change in arid and semiarid western N orth A merica. Global Change Biology, 18(3), 821-842. doi:10.1111/j.1365-2486.2011.02588.xKARRENBERG, S., EDWARDS, P. J., & KOLLMANN, J. (2002). The life history of Salicaceae living in the active zone of floodplains. Freshwater Biology, 47(4), 733-748. doi:10.1046/j.1365-2427.2002.00894.xMERRITT, D. M., SCOTT, M. L., LeROY POFF, N., AUBLE, G. T., & LYTLE, D. A. (2010). Theory, methods and tools for determining environmental flows for riparian vegetation: riparian vegetation-flow response guilds. Freshwater Biology, 55(1), 206-225. doi:10.1111/j.1365-2427.2009.02206.xRood, S. B., Braatne, J. H., & Hughes, F. M. R. (2003). Ecophysiology of riparian cottonwoods: stream flow dependency, water relations and restoration. Tree Physiology, 23(16), 1113-1124. doi:10.1093/treephys/23.16.1113Junk WJ, Bayley PB, Sparks RE (1989) The Flood Pulse Concept in River-Floodplain Systems. In: Dodge DP, editor. Canadian Special Publication of Fisheries and Aquatic Sciences. pp. 110–127.Naiman and, R. J., & Décamps, H. (1997). THE ECOLOGY OF INTERFACES:Riparian Zones. Annual Review of Ecology and Systematics, 28(1), 621-658. doi:10.1146/annurev.ecolsys.28.1.621NRC NRC (2002) Riparian Areas: Functions and Strategies for Management. Washington, D.C., USA: The National Academies Press. 444 p.McClain, M. E., Boyer, E. W., Dent, C. L., Gergel, S. E., Grimm, N. B., Groffman, P. M., … Pinay, G. (2003). Biogeochemical Hot Spots and Hot Moments at the Interface of Terrestrial and Aquatic Ecosystems. Ecosystems, 6(4), 301-312. doi:10.1007/s10021-003-0161-9Tockner, K., & Stanford, J. A. (2002). Riverine flood plains: present state and future trends. Environmental Conservation, 29(3), 308-330. doi:10.1017/s037689290200022xTockner K, Bunn SE, Gordon C, Naiman RJ, Quinn GP, et al.. (2008) Flood plains: critically threatened ecosystems. In: Polunin NVC, editor. Aquatic Ecosystems: trends and global prospects. New York, USA: Cambridge University Press. pp. 482.Broadmeadow, S., & Nisbet, T. R. (2004). The effects of riparian forest management on the freshwater environment: a literature review of best management practice. Hydrology and Earth System Sciences, 8(3), 286-305. doi:10.5194/hess-8-286-2004Naiman, R. J., Decamps, H., & Pollock, M. (1993). The Role of Riparian Corridors in Maintaining Regional Biodiversity. Ecological Applications, 3(2), 209-212. doi:10.2307/1941822Casatti, L., Teresa, F. B., Gonçalves-Souza, T., Bessa, E., Manzotti, A. R., Gonçalves, C. da S., & Zeni, J. de O. (2012). From forests to cattail: how does the riparian zone influence stream fish? Neotropical Ichthyology, 10(1), 205-214. doi:10.1590/s1679-62252012000100020Blackwell MSA, Maltby E, editors (2006) How to use floodplains for flood risk reduction. Luxembourg, Belgium: European Communities. 144 p.Daily GC, editor (1997) Nature's Services - Societal Dependence on Natural Ecosystems. Washington D. C., USA: Island press. 392 p.Berges SA (2009) Ecosystem services of riparian areas: stream bank stability and avian habitat. Ames, Iowa, USA: Iowa State University. 106 p.Flather CH, Cordell HK (1995) Outdoor Recreation: Historical and Anticipated Trends. In: Knight RL, Gutzwiller KJ, editors. Wildlife and Recreationists - Coexistence through management and research. Washington D. C., USA: Island press. pp. 372.Holmes, T. P., Bergstrom, J. C., Huszar, E., Kask, S. B., & Orr, F. (2004). Contingent valuation, net marginal benefits, and the scale of riparian ecosystem restoration. Ecological Economics, 49(1), 19-30. doi:10.1016/j.ecolecon.2003.10.015NAIMAN, R. J., BILBY, R. E., & BISSON, P. A. (2000). Riparian Ecology and Management in the Pacific Coastal Rain Forest. BioScience, 50(11), 996. doi:10.1641/0006-3568(2000)050[0996:reamit]2.0.co;2Nehlsen, W., Williams, J. E., & Lichatowich, J. A. (1991). Pacific Salmon at the Crossroads: Stocks at Risk from California, Oregon, Idaho, and Washington. Fisheries, 16(2), 4-21. doi:10.1577/1548-8446(1991)0162.0.co;2Loučková, B. (2011). VEGETATION-LANDFORM ASSEMBLAGES ALONG SELECTED RIVERS IN THE CZECH REPUBLIC, A DECADE AFTER A 500-YEAR FLOOD EVENT. River Research and Applications, 28(8), 1275-1288. doi:10.1002/rra.1519Stromberg, J. C., Tluczek, M. G. F., Hazelton, A. F., & Ajami, H. (2010). A century of riparian forest expansion following extreme disturbance: Spatio-temporal change in Populus/Salix/Tamarix forests along the Upper San Pedro River, Arizona, USA. Forest Ecology and Management, 259(6), 1181-1189. doi:10.1016/j.foreco.2010.01.005Wohl, E., Angermeier, P. L., Bledsoe, B., Kondolf, G. M., MacDonnell, L., Merritt, D. M., … Tarboton, D. (2005). River restoration. Water Resources Research, 41(10). doi:10.1029/2005wr003985Auble, G. T., Scott, M. L., & Friedman, J. M. (2005). Use of individualistic streamflow-vegetation relations along the Fremont River, Utah, USA to assess impacts of flow alteration on wetland and riparian areas. Wetlands, 25(1), 143-154. doi:10.1672/0277-5212(2005)025[0143:uoisra]2.0.co;2Camporeale, C., & Ridolfi, L. (2006). Riparian vegetation distribution induced by river flow variability: A stochastic approach. Water Resources Research, 42(10). doi:10.1029/2006wr004933Dixon, M. D., & Turner, M. G. (2006). Simulated recruitment of riparian trees and shrubs under natural and regulated flow regimes on the Wisconsin River, USA. River Research and Applications, 22(10), 1057-1083. doi:10.1002/rra.948Orellana, F., Verma, P., Loheide, S. P., & Daly, E. (2012). Monitoring and modeling water-vegetation interactions in groundwater-dependent ecosystems. Reviews of Geophysics, 50(3). doi:10.1029/2011rg000383Primack, A. G. B. (2000). SIMULATION OF CLIMATE-CHANGE EFFECTS ON RIPARIAN VEGETATION IN THE PERE MARQUETTE RIVER, MICHIGAN. Wetlands, 20(3), 538-547. doi:10.1672/0277-5212(2000)0202.0.co;2Tealdi, S., Camporeale, C., & Ridolfi, L. (2013). Inter-species competition–facilitation in stochastic riparian vegetation dynamics. Journal of Theoretical Biology, 318, 13-21. doi:10.1016/j.jtbi.2012.11.006Winemiller, K. O., Flecker, A. S., & Hoeinghaus, D. J. (2010). Patch dynamics and environmental heterogeneity in lotic ecosystems. Journal of the North American Benthological Society, 29(1), 84-99. doi:10.1899/08-048.1Politti E, Egger G, Angermann K, Blamauer B, Klösch M, et al.. (2011) Evaluating climate change impacts on Alpine floodplain vegetation. In: C. Chomette & Steiger E, editor; 15–17 June; Clermont-Ferrand, France. pp. 177–182.Rivaes R, Rodríguez-González PM, Albuquerque A, Pinheiro AN, Egger G, et al.. (2012) Climate change impacts on Mediterranean riparian vegetation; 5th International Perspective on Water Resources & the Environment (IPWE 2012). January 4th-7th; Marrakech, Morocco.Mader H, Steidl T, Wimmer R (1996) Abflußregime österreichischer Fließgewässer. Wien, AUT: Umweltbundesamt. 192 p.Mearns LO, Hulme M, Carter TR, Leemans R, Lal M, et al.. (2001) Climate Scenario Development. In: Houghton JT, Ding Y, Griggs DJ, Noguer M, van der Linden PJ, et al.., editors. Climate Change 2001: The Scientific Basis. Cambridge, UK: Cambridge University Press. pp. 739–768.Nakicenovik N, Swart R, editors (2000) Emission Scenarios - Intergovernmental Panel on Climate Change (IPCC) Special Report on Emission Scenarios. Cambridge, UK: Cambridge University Press. 570 p.Santos FD, Forbes K, Moita R, editors (2002) Climate Change in Portugal, Scenarios, Impacts and Adaptation Measures - SIAM project. Lisbon, Portugal: Gradiva. 454 p.Stanzel, P., & Nachtnebel, H. P. (2010). Mögliche Auswirkungen des Klimawandels auf den Wasserhaushalt und die Wasserkraftnutzung in Österreich. Österreichische Wasser- und Abfallwirtschaft, 62(9-10), 180-187. doi:10.1007/s00506-010-0234-xMoreno JM, Aguiló E, Alonso S, Cobelas MÁ, Anadón R, et al.. (2005) A Preliminary Assessment of the Impacts in Spain due to the Effects of Climate Change. Madrid, SP: Ministerio del Medio Ambiente.Santos FD, Miranda P, editors (2006) Alterações climáticas em Portugal cenários, impactos e medidas de adaptação, Projecto SIAM II. Lisbon, Portugal: Gradiva. 506 p.Crawford NH, Linsley RK (1966) Digital simulation in hydrology: Stanford Watershed Model IV. Department of Civil Engineering, Stanford University. 210 p.Hernández L (2007) Efectos del Cambio Climático en los Sistemas Complejos de Recursos Hídricos. Aplicación a la Cuenca del Jucar. Valenvia, SP: Universidad Politécnica de Valencia.Benjankar, R., Egger, G., Jorde, K., Goodwin, P., & Glenn, N. F. (2011). Dynamic floodplain vegetation model development for the Kootenai River, USA. Journal of Environmental Management, 92(12), 3058-3070. doi:10.1016/j.jenvman.2011.07.017Stanley, E. H., Powers, S. M., & Lottig, N. R. (2010). The evolving legacy of disturbance in stream ecology: concepts, contributions, and coming challenges. Journal of the North American Benthological Society, 29(1), 67-83. doi:10.1899/08-027.1Stromberg, J. C. (2001). Restoration of riparian vegetation in the south-western United States: importance of flow regimes and fluvial dynamism. Journal of Arid Environments, 49(1), 17-34. doi:10.1006/jare.2001.0833Lake, P. S. (2000). Disturbance, patchiness, and diversity in streams. Journal of the North American Benthological Society, 19(4), 573-592. doi:10.2307/1468118Resh, V. H., Brown, A. V., Covich, A. P., Gurtz, M. E., Li, H. W., Minshall, G. W., … Wissmar, R. C. (1988). The Role of Disturbance in Stream Ecology. Journal of the North American Benthological Society, 7(4), 433-455. doi:10.2307/1467300White, P. S. (1979). Pattern, process, and natural disturbance in vegetation. The Botanical Review, 45(3), 229-299. doi:10.1007/bf02860857Tockner, K., Malard, F., & Ward, J. V. (2000). An extension of the flood pulse concept. Hydrological Processes, 14(16-17), 2861-2883. doi:10.1002/1099-1085(200011/12)14:16/173.0.co;2-fBenjankar R, Egger G, Jorde K (2009) Development of a dynamic floodplain vegetation model for the Kootenai river, USA: concept and methodology. 7th ISE and 8th HIC.Egger, G., Politti, E., Woo, H., Cho, K.-H., Park, M., Cho, H., … Lee, H. (2012). Dynamic vegetation model as a tool for ecological impact assessments of dam operation. Journal of Hydro-environment Research, 6(2), 151-161. doi:10.1016/j.jher.2012.01.007García-Arias A, Francés F, Andrés-Doménech I, Vallés F, Garófano-Gómez V, et al. (2011) Modeling the spatial distribution and temporal dynamics of Mediterranean riparian vegetation in a reach of the Mijares River (Spain). In: CChomette & Steiger E, editor; EUROMECH Colloquium 523. 15–17 June; Clermont-Ferrand, France. pp. 153–157.García-Arias, A., Francés, F., Ferreira, T., Egger, G., Martínez-Capel, F., Garófano-Gómez, V., … Rodríguez-González, P. M. (2012). Implementing a dynamic riparian vegetation model in three European river systems. Ecohydrology, 6(4), 635-651. doi:10.1002/eco.1331Rivaes, R., Rodríguez-González, P. M., Albuquerque, A., Pinheiro, A. N., Egger, G., & Ferreira, M. T. (2012). Riparian vegetation responses to altered flow regimes driven by climate change in Mediterranean rivers. Ecohydrology, 6(3), 413-424. doi:10.1002/eco.1287RIPFLOW (2011) Riparian vegetation modelling for the assessment of environmental flow regimes and climate change impacts within the WFD. 238 p. http://www.iiama.upv.es/RipFlow/publications/08_RIPFLOW%20Project%20-%20Final%20Report.pdf.R Development Core Team (2011) R: A language and environment for statistical computing. Vienna, AT: R Foundation for Statistical Computing.Bendix, J., & Hupp, C. R. (2000). Hydrological and geomorphological impacts on riparian plant communities. Hydrological Processes, 14(16-17), 2977-2990. doi:10.1002/1099-1085(200011/12)14:16/173.0.co;2-4Tabacchi, E., Correll, D. L., Hauer, R., Pinay, G., Planty‐Tabacchi, A., & Wissmar, R. C. (1998). Development, maintenance and role of riparian vegetation in the river landscape. Freshwater Biology, 40(3), 497-516. doi:10.1046/j.1365-2427.1998.00381.xPardé M (1955) Fleuves et rivières. Paris: Armand Colin. 241 p.L'vovich MI (1979) World water resources and their future. Chelsea, Michigan, USA: American Geophysical Union. 415 p.Wrzesiński, D. (2013). Uncertainty of Flow Regime Characteristics of Rivers in Europe. Quaestiones Geographicae, 32(1), 43-53. doi:10.2478/quageo-2013-0006Friedman, J. M., & Lee, V. J. (2002). EXTREME FLOODS, CHANNEL CHANGE, AND RIPARIAN FORESTS ALONG EPHEMERAL STREAMS. Ecological Monographs, 72(3), 409-425. doi:10.1890/0012-9615(2002)072[0409:efccar]2.0.co;2Whited, D. C., Lorang, M. S., Harner, M. J., Hauer, F. R., Kimball, J. S., & Stanford, J. A. (2007). CLIMATE, HYDROLOGIC DISTURBANCE, AND SUCCESSION: DRIVERS OF FLOODPLAIN PATTERN. Ecology, 88(4), 940-953. doi:10.1890/05-1149Gurnell, A. (2013). Plants as river system engineers. Earth Surface Processes and Landforms, 39(1), 4-25. doi:10.1002/esp.3397Camporeale, C., Perucca, E., Ridolfi, L., & Gurnell, A. M. (2013). MODELING THE INTERACTIONS BETWEEN RIVER MORPHODYNAMICS AND RIPARIAN VEGETATION. Reviews of Geophysics, 51(3), 379-414. doi:10.1002/rog.20014Gurnell, A. M., Bertoldi, W., & Corenblit, D. (2012). Changing river channels: The roles of hydrological processes, plants and pioneer fluvial landforms in humid temperate, mixed load, gravel bed rivers. Earth-Science Reviews, 111(1-2), 129-141. doi:10.1016/j.earscirev.2011.11.005Corenblit, D., Baas, A. C. W., Bornette, G., Darrozes, J., Delmotte, S., Francis, R. A., … Steiger, J. (2011). Feedbacks betwee
    corecore