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Abstract

Flow regime determines physical habitat conditions and local biotic configuration. The development of en-
vironmental flow guidelines to support the river integrity is becoming a major concern in water resources
management. In this study, we analysed two sites located in southern part of Portugal, respectively at Odelouca
and Ocreza Rivers, characterised by the Mediterranean climate. Both rivers are almost in pristine condition, not
regulated by dams or other diversion construction. This study presents an analysis of the effect on fish habitat
suitability by the implementation of different hydrological e-flow methods. To conduct this study we employed
certain hydrological e-flow methods recommended by the European Small Hydropower Association (ESHA).
River hydrology assessment was based on approximately 30 years of mean daily flow data, provided by the
Portuguese Water Information System (SNIRH). The biological data, bathymetry, physical and hydraulic features,
and the Habitat Suitability Index for fish species were collected from extensive field works. We followed the
Instream Flow Incremental Methodology (IFIM) to assess the flow-habitat relationship taking into account the
habitat suitability of different instream flow releases. Initially, we analysed fish habitat suitability based on natural
conditions, and we used it as reference condition for other scenarios considering the chosen hydrological e-flow
methods. We accomplished the habitat modelling through hydrodynamic analysis by using River-2D model. The
same methodology was applied to each scenario by considering as input the e-flows obtained from each of the
hydrological method employed in this study. This contribution shows the significance of ecohydrological studies
in establishing a foundation for water resources management actions.
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Methodology

Study Site and Data

Run-off-River (RoR) Hydropower is a widespread non-consumptive water use that causes alteration of  aquatic ecosystems. Taking into account the 

increasing numbers of  constructed and ongoing projects of  RoR hydropower (Kelly-Richards et al., 2017), the cumulative impact on the ecosystem per unit 

generated electricity may be increasing. Since the RoR hydropower are not associated with any regulation system, their power production is directly 

interconnected with the instream flow requirements of  the river reach downstream the diversion weir. Thus, it is critical to define the trade-off  between the 

fraction of  flow allocated as instream flow, and the fraction of  flow allocated for electricity generation, which is a desirable renewable energy resource. Flow 

regime determines physical habitat conditions and local biotic configuration. The development of  environmental flow guidelines to support the river 

integrity is becoming a major concern in water resources management. This study presents an analysis on implications and reliability of  seven hydrological 

based e-flow methods in the electricity generation and fish habitat alteration.
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2.1 Environmental Flow Methods (EFMs)

• Percentiles Q75 and Q80 of FDC (Verma et al., 2016)

• Minimum Mean Flow in August (NMQ_August)
(Tharme, 2003).

• Linearised Matthey (L.M) (Penche, 1998).

• 10% of Mean Annual Flow (10%MAF) (Tharme, 2003).

• Minimum Annual Flow (NNQ) (Penche, 1998).

• 10% of Daily Flow (10% Daily) (Penche, 1998).

2.2 Energy Model

• The potential energy is computed according to

following formula: 𝑃 = 9.81 ρ 𝑄 𝐻 𝜂, where 𝑃 is the

power output, 9.81 the acceleration due to gravity (m

sec-2), ρ is the density of water (1000 kg m-3), 𝑄 is

turbine flow in (m3 s-1), 𝐻=20 m is net head, and

𝜂=0.85 is overall efficiency of the system. Assumed

installed power is approx. 1MW.

2.3 Reliability Index (RI) Analysis of  EFMs

• This index is computed as the fraction of time when

natural flow exceeds the flow suggested by EFMs

(Eq.1).

𝑹𝑰 = (𝑻𝑒𝑥𝑐𝑒𝑒𝑑𝑎𝑛𝑐𝑒T
−1

total) 100 % (Eq.1).

2.4 Indicators of Hydrological Alteration (IHA)

• 33 IHA and 34 Environmental Flow Components

(EFC), IHA software, V.7.1, (Richter et al., 1996).
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A brief  description of  methodology 

applied in this study is given in the 

following sections while the procedures 

followed are presented schematically 

(Fig.1).

Fig.1 General overview of  analysis and procedures 

from hydrological analysis to habitat modelling
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We considered one study site in the Ocreza River, East Portugal (Fig. 2). The river

drains a watershed of 1429 km2 with 90 km length and mean annual flow of 16.5

m3 s-1.

• Flow Data - (i.e., 29 year mean daily), from Portuguese Water Information

System (SNIRH)

• Hydraulic Data - (i.e., flow velocities and depths), measured along the study

site, considering several cross sections; measured with ruler and probe (model

002, Valeport) positioned at 60% of the local depth below the surface.

• Riverbed Topography - surveyed in 2013 using a combination of a Nikon

DTM330 total station and 30 a Global Positioning System (GPS).

• Fish Species, Preference Curves - Barbel, Calandino (Bordalo) and Iberian

Straight-mouth Nase (Boga), two life stages (i.e., juvenile and adult). Sampling:

conducted during 2012 and 2013, October at undisturbed or minimally

disturbed sites, Ocreza river (Boavida et al., 2015).

• Substrate Composition – It was visually assessed and represented to define

the effective roughness heights along the riverbed.

First and second author have PhD scholarships sponsored by Foundation for

Science and Technology (FCT), with references: PD/BD/114558/2016 and

SFRH/BD/52515/2014. Authors are grateful to José Maria Santos and

Isabel Boavida for their contribution on collecting the field data.
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Fig.2 Study site location, riverbed topography (right upward) 

and channel index suitability (right downward)

2.5 Hydrodynamic Modelling

• Two flow regimes; inter-annual mean low

flow and 3-day min flow in October (i.e.,

natural and altered).

• Three cyprinid fish species, two life stages

(i.e., juvenile and adult).

• River 2D V. 0.95a was used to conduct the

hydrodynamic modelling.

2.6 Habitat Alteration Index Due to Flow

Alteration (HAIQ)

• This index is measured by using (Eq.2).

𝑯𝑨𝑰𝑸 = 𝑾𝑼𝑨𝑄𝑛 −𝑾𝑼𝑨𝑄𝑎 𝑾𝑼𝑨𝑄𝑛
-1

(Eq.2).

𝑊𝑈𝐴𝑄𝑛−Weighted usable area, natural flow

𝑊𝑈𝐴𝑄𝑎−Weighted usable area, altered flow

Fig.4 Inter-annual rise and fall rate for natural and altered flow regime, 10% 

daily is the only method that provides a rate of  change similar to  that of  

natural regime. This is a very important component, since high rate of  

changes may wash-out and strand of  aquatic species
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Fig.7 Inter-annual energy generation expressed as percentile of  

25 and 75%, median and min, max. 10% MAF provide relatively 

low energy generation while NNQ shows a slight difference with 

the other methods except 10% MAF

Fig.9 Habitat Alteration Index due to flow alteration considering all fish species, two 

life stages, 10% MAF shows lowest degree of  alteration, followed by 10% Daily
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• Reliability- The six of the tested EFMs are not fully reliable, with failure rates of 24.9, 12.6, 18.4, 23.9, 44.8 and 12.6 % respectively, 10% Daily is the only fully reliable method, with 0% 

failure.

• Flow Regime - 10% Daily method is the only method which provides a rate of  change (rise rate/fall rate) as the natural flow regime, by maintaining natural flow regime components.

• Flow Allocation - In terms of quantity, all methods allocate almost similar flow discharges as e-flow, except 10% MAF which provides slightly higher flow, but not a significant difference.

• Energy Generation -10 % MAF provides relatively low energy generation, while six other methods provides similar energy generation amount. 

• Habitat Alteration - 10 % MAF and 10% Daily show the highest performance related to WUA and the lowest HAIQ, 10 % MAF has performance similar to the natural flow regime.

• Life Stage Sensitivity – Regarding WUA and the lowest HAIQ , adult  fish are slightly more sensitive to flow alteration than juveniles; this is due to their positioning preference in the

riverbed.

Input Data
Mean Daily Discharge

NMQ 
August

E-Flows Methods

Turbined Flows

• IHA analysis
• Reliability analysis
• Flow regime characterisation

Energy generation 
analysis

Q75% Q80% L.M
10% 
MAF

NNQ
10%
Daily 

E-Flows

Output

Input Data
• Riverbed topography
• Roughness (substrate, cover

vegetation)
• Flow discharge (Natural and 

e-flow regimes)
• Fish habitat suitability curves 

(velocity and depth) for 
different life stages

Habitat Modelling

• Weighted Usable Area (WUA)
• Habitat Alteration Index due 

to flow (HAIQ)

Habitat Modelling Output

Concerning flow regime (Fig.4), 10% Daily is the only method 

that provides a flow regime almost similar to the natural one. In 

terms of  reliability (Fig.5), 10% Daily is the most reliable, while 

10% MAF the least reliable method. Regarding water allocation 

(Fig.6), almost all methods show similar performance. 10% MAF 

provided the lowest energy production (Fig.7). The highest WUA 

is provided by 10% MAF (Fig.8).  The lowest habitat alteration 

is provided by 10 % MAF, followed by 10% Daily (Fig.9).

Fig.3 Long-term flow duration curve of  natural flow regime and flow 

allocated for energy generation. Qd is the design flow Qmin, Qmax are the 

minimum and maximum discharge, and Vd is the design volume used for 

energy generation. Along the dash blue line are presented biological processes 

supported by certain flow regime

Fig.6 Inter-annual natural and altered flow discharge expressed 

as percentile of  25 and 75%, median and min, max. All EFMs 

provide almost the same flow discharge except 10% MAF which 

provide slightly higher flow discharge than other methods

Fig.8 Scenarios with highest Weighted Usable Area (WUA) for 3-day min flow 

(above) and mean low flow in October (fish sampling month) (below). 

considering all fish species, 10 %MAF and 10% Daily provide highest WUA  

Fig.5 Reliability of  environmental flow methods to 

satisfy natural flow regime, expressed as rate of  failure
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