48 research outputs found

    Protocol for High-Yield Production of Photo-Leucine-Labeled Proteins in Escherichia coli

    Get PDF
    UV-cross-linking mass spectrometry is an emerging technique to obtain structural information of biomacromolecules and their complexes; in vivo; and; in vitro; . In particular, certain photo-reactive amino acids (pA) such as photo-leucine (pLeu) and photo-methionine can provide unique short-distance information on the structural core regions of proteins. Here, we present a protocol for high-yield incorporation of pLeu in proteins recombinantly expressed in; Escherichia coli; . The protein of interest is expressed at high cell densities, which reduces the required amount of the pA by a factor of 10, as compared to the standard protocols, while maintaining high incorporation rates. For the two chaperones, trigger factor and SecB, up to 3 mg of pLeu-labeled protein were thus obtained from 100 mL of cell culture, with label incorporation rates of up to 34%. For trigger factor, UV-induced cross-linking leads to the identification of 12 cross-links that are in agreement with the published three-dimensional structures. The accessibility of milligram amounts of pLeu-labeled proteins at low costs will be highly useful to address structural biology questions

    TORC1 phosphorylates and inhibits the ribosome preservation factor Stm1 to activate dormant ribosomes

    Get PDF
    Target of rapamycin complex 1 (TORC1) promotes biogenesis and inhibits degradation of ribosomes in response to nutrient availability. To ensure a basal supply of ribosomes, cells preserve a small pool of dormant ribosomes under nutrient-limited conditions. The regulation of dormant ribosomes is poorly characterized. Here, we show that upon inhibition of TORC1 by rapamycin or nitrogen starvation, Stm1 (suppressor of target of Myb protein 1) forms non-translating, dormant 80S ribosomes. Furthermore, Stm1-bound 80S ribosomes are protected from proteasomal degradation. Upon re-feeding, TORC1 directly phosphorylates and inhibits Stm1, thereby reactivating translation. Finally, SERBP1 (SERPINE1 mRNA binding protein), a mammalian ortholog of Stm1, forms dormant 80S ribosomes upon mTORC1 inhibition in mammalian cells. Thus, TORC1 regulates ribosomal dormancy in an evolutionarily conserved manner via a ribosome preservation factor

    Adipose mTORC2 is essential for sensory innervation in white adipose tissue and whole-body energy homeostasis

    Get PDF
    Adipose tissue, via sympathetic and possibly sensory neurons, communicates with the central nervous system (CNS) to mediate energy homeostasis. In contrast to the sympathetic nervous system, the morphology, role and regulation of the sensory nervous system in adipose tissue are poorly characterized.; Taking advantage of recent progress in whole-mount three-dimensional imaging, we identified a network of calcitonin gene-related protein (CGRP)-positive sensory neurons in murine white adipose tissue (WAT). We found that adipose mammalian target of rapamycin complex 2 (mTORC2), a major component of the insulin signaling pathway, is required for arborization of sensory, but not of sympathetic neurons. Time course experiments revealed that adipose mTORC2 is required for maintenance of sensory neurons. Furthermore, loss of sensory innervation in WAT coincided with systemic insulin resistance. Finally, we established that neuronal protein growth-associated protein 43 (GAP43) is a marker for sensory neurons in adipose tissue.; Our findings indicate that adipose mTORC2 is necessary for sensory innervation in WAT. In addition, our results also suggest that WAT may affect whole-body energy homeostasis via sensory neurons

    Adipose mTORC2 is essential for arborization of sensory neurons in white adipose tissue and whole-body energy homeostasis

    Get PDF
    Adipose tissue, via sympathetic and sensory neurons, communicates with the central nervous system (CNS) to mediate energy homeostasis. In contrast to the sympathetic nervous system, the morphology, role and regulation of the sensory nervous system in adipose tissue is poorly characterized. Taking advantage of recent progress in whole-mount three-dimensional imaging of adipose tissue, we identified a neuronal network of calcitonin gene-related protein (CGRP)-positive sensory neurons in white adipose tissue (WAT). Furthermore, we show that adipose mammalian target of rapamycin complex 2 (mTORC2), a major component of the insulin signaling pathway, mediates sensory innervation in WAT. Based on visualization of neuronal networks, mTORC2-deficient WAT displayed reduced arborization of (CGRP)-positive sensory neurons, while sympathetic neurons were unaffected. This selective loss of sensory innervation followed reduced expression of growth-associated protein 43 (GAP43) in CGRP-positive sensory neurons. Finally, we found that loss of sensory innervation in WAT correlated with systemic insulin resistance. Our findings suggest that adipose mTORC2 is necessary for sensory innervation in WAT which likely contributes to WAT-to-CNS communication

    Molecular control of endurance training adaptation in male mouse skeletal muscle

    Get PDF
    Skeletal muscle has an enormous plastic potential to adapt to various external and internal perturbations. Although morphological changes in endurance-trained muscles are well described, the molecular underpinnings of training adaptation are poorly understood. We therefore aimed to elucidate the molecular signature of muscles of trained male mice and unravel the training status-dependent responses to an acute bout of exercise. Our results reveal that, even though at baseline an unexpectedly low number of genes define the trained muscle, training status substantially affects the transcriptional response to an acute challenge, both quantitatively and qualitatively, in part associated with epigenetic modifications. Finally, transiently activated factors such as the peroxisome proliferator-activated receptor-γ coactivator 1α are indispensable for normal training adaptation. Together, these results provide a molecular framework of the temporal and training status-dependent exercise response that underpins muscle plasticity in training

    Diet-induced loss of adipose Hexokinase 2 triggers hyperglycemia

    Get PDF
    Chronically high blood glucose (hyperglycemia) leads to diabetes, fatty liver disease, and cardiovascular disease. Obesity is a major risk factor for hyperglycemia, but the underlying mechanism is unknown. Here we show that a high fat diet (HFD) in mice causes early loss of expression of the glycolytic enzyme Hexokinase 2 (HK2) specifically in adipose tissue. Adipose-specific knockout of Hk2 caused enhanced gluconeogenesis and lipogenesis in liver, a condition known as selective insulin resistance, leading to glucose intolerance. Furthermore, we observed reduced hexokinase activity in adipose tissue of obese and diabetic patients, and identified a loss-of-function mutation in the hk2 gene of naturally hyperglycemic Mexican cavefish. Mechanistically, HFD in mice led to loss of HK2 by inhibiting translation of Hk2 mRNA. Our findings identify adipose HK2 as a critical mediator of systemic glucose homeostasis, and suggest that obesity-induced loss of adipose HK2 is an evolutionarily conserved, non-cell-autonomous mechanism for the development of hyperglycemia
    corecore