175 research outputs found

    Relationship of pulmonary toxicity and carcinogenicity of fine and ultrafine granular dusts in a rat bioassay

    Get PDF
    The current carcinogenicity study with female rats focused on the toxicity and carcinogenicity of intratracheally instilled fine and ultrafine granular dusts. The positive control, crystalline silica, elicited the greatest magnitude and progression of pulmonary inflammatory reactions, fibrosis and the highest incidence of primary lung tumors (39.6%). Addition of poly-2-vinylpyridine-N-oxide decreased inflammatory responses, fibrosis, and the incidence of pulmonary tumors induced by crystalline quartz to 21.4%. After repeated instillation of soluble, ultrafine amorphous silica (15 mg) a statistically significant tumor response (9.4%) was observed, although, the inflammatory response in the lung was not as persistently severe as in rats treated with carbon black. Instillation of ultrafine carbon black (5 mg) caused a lung tumor incidence of 15%. In contrast to a preceding study using a dose of 66 mg coal dust, lung tumors were not detected after exposure to the same coal dust at a dose of 10 mg in this study. Pulmonary inflammatory responses to coal dust were very low indicating a mechanistic threshold for the development of lung tumors connected with particle related chronic inflammation. The animals treated with ultrafine carbon black and ultrafine amorphous silica showed significantly more severe lesions in non-cancerous endpoints when compared to animals treated with fine coal dust. Furthermore, carbon black treated rats showed more severe non-cancerous lung lesions than amorphous silica treated rats. Our data show a relationship between tumor frequencies and increasing scores when using a qualitative scoring system for specific non-cancerous endpoints such as inflammation, fibrosis, epithelial hyperplasia, and squamous metaplasia

    Pathogenicity of Staphylococcus aureus phage type 3A/3C/55/71 and Staphylococcus sciuri in germfree euthymic and athymic mice after intravenous infection

    Get PDF
    To evaluate the possibility ofprotecting our colonies of small laboratory animals against Staphylococcus aureus infections by preassociation with the rodent specific Staphylococcus sciuri, it was first of all necessary to determine the pathogenicity of the S. sciuri strain under consideration. Germfree euthymic Han: NMRI and athymic (T-cell deficient) Han:NMRInu/nu mice were injected intravenously with increasing doses of S. sciuri strain 908/1. S. aureus (phage type 3A/3C/55/71) which is known to cause health problems in SPF colonies of the above mentioned strains of mice was used for comparison.S. aureus infections exhibited a dosedependent morbidity and mortality in both strains of mice. In contrast, S. sciuri did not cause any lethal infection but produced sporadically mild purulent processes in the euthymic mice. Due to the use of relatively small groups a statistical evaluation can only show tendenc1es

    The carcinogenic effect of various multi-walled carbon nanotubes (MWCNTs) after intraperitoneal injection in rats

    Get PDF
    Background: Biological effects of tailor-made multi-walled carbon nanotubes (MWCNTs) without functionalization were investigated in vivo in a two-year carcinogenicity study. In the past, intraperitoneal carcinogenicity studies in rats using biopersistent granular dusts had always been negative, whereas a number of such studies with different asbestos fibers had shown tumor induction. The aim of this study was to identify possible carcinogenic effects of MWCNTs. We compared induced tumors with asbestos-induced mesotheliomas and evaluated their relevance for humans by immunohistochemical methods. Methods: A total of 500 male Wistar rats (50 per group) were treated once by intraperitoneal injection with 109 or 5 � 109 WHO carbon nanotubes of one of four different MWCNTs suspended in artificial lung medium, which was also used as negative control. Amosite asbestos (108 WHO fibers) served as positive control. Morbid rats were sacrificed and necropsy comprising all organs was performed. Histopathological classification of tumors and, additionally, immunohistochemistry were conducted for podoplanin, pan-cytokeratin, and vimentin to compare induced tumors with malignant mesotheliomas occurring in humans. Results: Treatments induced tumors in all dose groups, but incidences and times to tumor differed between groups. Most tumors were histologically and immunohistochemically classified as malignant mesotheliomas, revealing a predominantly superficial spread on the serosal surface of the abdominal cavity. Furthermore, most tumors showed invasion of peritoneal organs, especially the diaphragm. All tested MWCNT types caused mesotheliomas. We observed highest frequencies and earliest appearances after treatment with the rather straight MWCNT types A and B. In the MWCNT C groups, first appearances of morbid mesothelioma-bearing rats were only slightly later. Later during the two-year study, we found mesotheliomas also in rats treated with MWCNT D - the most curved type of nanotubes. Malignant mesotheliomas induced by intraperitoneal injection of different MWCNTs and of asbestos were histopathologically and immunohistochemically similar, also compared with mesotheliomas in man, suggesting similar pathogenesis. Conclusion: We showed a carcinogenic effect for all tested MWCNTs. Besides aspect ratio, curvature seems to be an important parameter influencing the carcinogenicity of MWCNTs

    Mesothelial cell differentiation into osteoblast- and adipocyte-like cells

    Get PDF
    Serosal pathologies including malignant mesothelioma (MM) can show features of osseous and/or cartilaginous differentiation although the mechanism for its formation is unknown. Mesothelial cells have the capacity to differentiate into cells with myofibroblast, smooth muscle and endothelial cell characteristics. Whether they can differentiate into other cell types is unclear. This study tests the hypothesis that mesothelial cells can differentiate into cell lineages of the embryonic mesoderm including osteoblasts and adipocytes. To examine this, a functional assay of bone formation and an adipogenic assay were performed in vitro with primary rat and human mesothelial cells maintained in osteogenic or adipogenic medium (AM) for 0–26 days. Mesothelial cells expressed increasing levels of alkaline phosphatase, an early marker of the osteoblast phenotype, and formed mineralized bone-like nodules. Mesothelial cells also accumulated lipid indicative of a mature adipocyte phenotype when cultured in AM. All cells expressed several key osteoblast and adipocyte markers, including osteoblast-specific runt-related transcription factor 2, and demonstrated changes in mRNA expression consistent with epithelial-to-mesenchymal transition. In conclusion, these studies confirm that mesothelial cells have the capacity to differentiate into osteoblast- and adipocyte-like cells, providing definitive evidence of their multipotential nature. These data strongly support mesothelial cell differentiation as the potential source of different tissue types in MM tumours and other serosal pathologies, and add support for the use of mesothelial cells in regenerative therapies

    Prenatal treatment with rosiglitazone attenuates vascular remodeling and pulmonary monocyte influx in experimental congenital diaphragmatic hernia

    Get PDF
    Publication history: Accepted - 23 October 2018; Published online - 12 November 2018.Introduction Extensive vascular remodeling causing pulmonary hypertension (PH) represents a major cause of mortality in patients with congenital diaphragmatic hernia (CDH). The chemokine monocyte chemoattractant protein-1 (MCP-1) is a biomarker for the severity of PH and its activation is accompanied by pulmonary influx of monocytes and extensive vascular remodeling. MCP-1 activation can be reversed by application of rosiglitazone (thiazolidinedione). We performed this study to evaluate the role of MCP-1 for the pathogenesis of PH in experimental CDH. We hypothesized that vascular remodeling and MCP-1 activation is accompanied by pulmonary influx of fetal monocytes and can be attenuated by prenatal treatment with rosiglitazone. Methods In a first set of experiments pregnant rats were treated with either nitrofen or vehicle on gestational day 9 (D9). Fetal lungs were harvested on D21 and divided into CDH and control. Quantitative real-time polymerase chain reaction, Western blot (WB), and immunohistochemistry (IHC) were used to evaluate MCP-1 expression, activation, and localization. Quantification and localization of pulmonary monocytes/macrophages were carried out by IHC. In a second set of experiments nitrofen-exposed dams were randomly assigned to prenatal treatment with rosiglitazone or placebo on D18+D19. Fetal lungs were harvested on D21, divided into control, CDH+rosiglitazone, and CDH+placebo and evaluated by WB as well as IHC. Results Increased thickness of pulmonary arteries of CDH fetuses was accompanied by increased systemic and perivascular MCP-1 protein expression and significantly higher amounts of pulmonary monocytes/macrophages compared to controls (p<0.01). These effects were reversed by prenatal treatment with rosiglitazone (p<0.01 vs. CDH+P; control). Conclusion Prenatal treatment with rosiglitazone has the potential to attenuate activation of pulmonary MCP-1, pulmonary monocyte influx, and vascular remodeling in experimental CDH. These results provide a basis for future research on prenatal immunomodulation as a novel treatment strategy to decrease secondary effects of PH in CDH.This work was supported by Children’s Medical & Research Foundation, Dublin, Ireland, https://cmrf.org/, Senior Research Fellowship JG, awarded to JG; German Research Foundation and Leipzig University within the program of Open Access Publishing, awarded to JG, https://www.ub.uni-leipzig.de/open-science/publikationsfonds/. The funders had no role in study design, data collection and analysis, decision to publish, or preparation of the manuscript

    MWCNTs of different physicochemical properties cause similar inflammatory responses, but differences in transcriptional and histological markers of fibrosis in mouse lungs

    Get PDF
    Multi-walled carbon nanotubes (MWCNTs) are extensively produced and used in composite materials and electronic applications, thus increasing risk of worker and consumer exposure. MWCNTs are an inhomogeneous group of nanomaterials that come in various lengths, shapes and with different metal contaminations, which makes hazard evaluation difficult. However, several studies suggest that length plays an important role in the toxicity induced by MWCNTs. How the length influences toxicity at the molecular level is yet to be characterized. Female C57BL/6 mice were exposed by single intratracheal instillation to 18, 54 or 162 µg/mouse of a short MWCNT (NRCWE-026, 847±102 nm in length) or long MWCNT (NM-401, 4048±366 nm in length). The two MWCNTs were extensively characterized. Lung tissues were harvested 24 h, 3 d and 28 d after exposure. We employed DNA microarrays, bronchoalveolar lavage fluid analysis, comet assay and dichlorodihydrofluorescein assay in order to profile the pulmonary responses. Bioinformatics tools were then applied to compare and contrast the expression profiles and to build a length dependent property-response matrix for gene-by-gene comparison. The toxicogenomic analysis of the global mRNA changes after exposure to the short, entangled NRCWE-026 or the longer, stiffer NM-401 showed high degree of similarities. The toxicity of both MWCNTs was driven by strong inflammatory and acute phase responses, which peaked at day 3 and was observed both in bronchoalveolar lavage cell influx and in gene expression profiles. The inflammatory response was sustained at post-exposure day 28. Also, at the sub-chronic level, we identified a sub-set of 14 fibrosis related genes that were uniquely differentially regulated after exposure to NM-401. Acellular ROS production occurred almost exclusively with NRCWE-026, however the longer NM-401 induced in vivo DNA strand breaks and differential regulation of genes involved in free radical scavenging more readily than NRCWE-026. Our results indicate that the global mRNA response after exposure to MWCNTs is length independent at the acute time points, but that fibrosis may be length dependent sub-chronic end point.JRC.H.6-Digital Earth and Reference Dat

    Benign keratinizing cystic squamous cell tumour in the rat lung

    No full text
    Benign keratinizing cystic squamous cell tumours were induced in rat lungs by intratracheal instillation of 15 mg carbon black particles. In this species keratinizing cystic squamous cell tumours are frequently observed after inhalation of intratracheal instillation of particles. Microscopically, the tumours are formed by a sharply demarcated, mostly keratinized squamous epithelium. In the center of the mass there are usually large amounts of keratin and necrotic tumour tissue. Epithelium may be flattened to a thin layer of squamous cells, especially adjacent to pleura or interstitium surrounding major airways and vessels. Growth occurs mainly by peripheral extension into the alveolar spaces. Mitoses are rare. These benign tumours may progress to squamous cell carcinomas, which show destruction of the basement membrane, cellular atypia, disorientation of cells and frequent mitoses
    • …
    corecore