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Multi-walled carbon nanotubes (MWCNTs) are an inhomogeneous group of nanomaterials that vary in lengths,
shapes and types of metal contamination, which makes hazard evaluation difficult. Here we present a
toxicogenomic analysis of female C57BL/6 mouse lungs following a single intratracheal instillation of 0, 18, 54
or 162 μg/mouse of a small, curled (CNTSmall, 0.8 ± 0.1 μm in length) or large, thick MWCNT (CNTLarge, 4 ±
0.4 μm in length). The twoMWCNTswere extensively characterized by SEM and TEM imaging, thermogravimet-
ric analysis, and Brunauer–Emmett–Teller surface area analysis. Lung tissues were harvested 24 h, 3 days and
28 days post-exposure. DNAmicroarrays were used to analyze gene expression, in parallel with analysis of bron-
choalveolar lavage fluid, lung histology, DNA damage (comet assay) and the presence of reactive oxygen species
(dichlorodihydrofluorescein assay), to profile and characterize related pulmonary endpoints. Overall changes in
global transcription following exposure to CNTSmall or CNTLarge were similar. Both MWCNTs elicited strong acute
phase and inflammatory responses that peaked at day 3, persisted up to 28 days, and were characterized by
increased cellular influx in bronchoalveolar lavage fluid, interstitial pneumonia and gene expression changes.
However, CNTLarge elicited an earlier onset of inflammation and DNA damage, and induced more fibrosis and a
unique fibrotic gene expression signature at day 28, compared to CNTSmall. The results indicate that the extent
of change at the molecular level during early response phases following an acute exposure is greater in mice
exposed to CNTLarge, which may eventually lead to the different responses observed at day 28.

© 2015 The Authors. Published by Elsevier Inc. This is an open access article under the CC BY-NC-ND license
(http://creativecommons.org/licenses/by-nc-nd/4.0/).
uer–Emmett–Teller surface area analysis; CNT, carbonnanotube; COPD, chronic obstructive pulmonary disease;DCFH-DA, 2′,7′-
, gene ontology;Mitsui-7,Mitsui XNRi-7;MWCNT,multi-walled carbon nanotube;Nano-CB, nano-carbon black; SEM, Scanning
py; TGA, thermogravimetric analysis.
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Introduction

Production and use of multi-walled carbon nanotubes (MWCNTs)
have increased extensively over the last decade (Beg et al., 2011;
Klumpp et al., 2006), thereby increasing the potential exposure for
both workers and consumers. Exposure to MWCNT via inhalation, in-
stillation or aspiration causes pulmonary effects in rodents including
lung inflammation, sustained interstitial fibrosis, and granuloma forma-
tion (Ma-Hock et al., 2009; Pauluhn, 2010a; Pauluhn, 2010b; Porter
et al., 2010; Reddy et al., 2010; Wang et al., 2011a).

MWCNTs vary in their length, wall thickness, aspect ratio, level and
type of metal contamination, and surface chemistry, all of which are
suggested to significantly influence their toxic potential. Thus, it is un-
clear if toxic responses observed after exposure to a specific MWCNT
may be extrapolated in a general way to expected toxic potentials of
other MWCNT types. It has been hypothesized that larger MWCNT,
with a high length/diameter-aspect ratio, may resemble asbestos and
be more carcinogenic and fibrogenic (Donaldson et al., 2010; Grosse
et al., 2014). For example, intraperitoneal instillation of MWCNT of dif-
ferent lengths resulted in length-dependent infiltration of inflammatory
cells in the peritoneal cavity of mice (Poland et al., 2008; Yamashita
et al., 2010; Rittinghausen et al., 2014). Elevated inflammation, protein
concentration, and fibrotic lesions along the parietal pleura and in the
mesothelial layer were observed in mice exposed to long MWCNT via
direct injection into the pleural cavity compared to mice exposed to
short MWCNT. In contrast, responses to short MWCNTmirrored the re-
sponses of mice injected with control vehicle (Murphy et al., 2011).
Thus, length and straightness play an important role in the toxicity
induced by MWCNT. However, how these parameters influence the
toxicity at the molecular level is unclear.

The objective of the present study was to employ toxicogenomics
tools to systematically characterize the biological pathways and func-
tions perturbed in mouse lungs exposed to two well-characterized
OECD Working Party on manufactured Nanomaterials standard
MWCNTs that differ in length, thickness, level of agglomeration and
content of metal impurities, in order to identify mechanisms of toxicity
that are distinctly associated with the two types of MWCNT. Genomic
tools provide a unique means to globally profile all of the molecular
pathways perturbed in response to MWCNT exposure, and thus permit
detailed characterization and categorization of the potential health
hazards of different MWCNTs. The expression profiles or perturbed
biological pathways that are identified can then be used to build a
property-response comparison, which contrasts the two different
MWCNTs and their impact on gene expression, and thereby brings us
closer to identifying biomarkers for human biomonitoring.

In the present study, groups of six female C57BL/6 mice were
exposed by single intratracheal instillation to 18, 54 or 162 μg/mouse
of small MWCNT NRCWE-026 (0.8 ± 0.1 μm in length) or large
MWCNT NM-401(4 ± 0.4 μm in length). Due to the high likelihood of
exposure of personnel during inhalation experiments, intratracheal in-
stillationwas used as a safe substitute for deposition through inhalation.
Instillation is rapid, and the dose is easily controlled and reasonably
well-distributed in the lung (Driscoll et al., 2000). Lung tissues
from each group of mice were harvested 24 h, 3 d and 28 d after
exposure. Global gene expression, inflammatory and genotoxic re-
sponses, lung morphology, as well as acellular production of free radi-
cals were assessed to profile the pulmonary responses. Bioinformatics
tools were used to compare and contrast the expression profiles.

Methods

Multiwalled carbon nanotubes

The following MWCNTs were used in the present study: The
NRCWE-026 (Nanocyl NC7000 CNT, Sambreville, Belgium) a small/
thin curled MWCNT referred to as CNTSmall. NM-401 is a larger/thick
MWCNT (kindly donated by the European Union Joint Research Centre,
Ispra, Italy) referred to as CNTLarge. Both MWCNTs are included in the
OECD Working Party on Manufactured Nanomaterials. The length and
diameter of both MWCNTs were measured in the Nanogenotox project
and are shown in Table 1 (The Nanogentox group, 2013). CNTLarge is
physicochemically similar to Mitsui XNRi-7 (in this study referred to
as Mitsui-7), which has been classified as possibly carcinogenic to
humans (Group 2B) (Grosse et al., 2014).

Dose selection.
Doses and time points were selected based on the previous and on-

going studies in our group (Bourdon et al., 2012b; Husain et al., 2013;
Jacobsen et al., 2009; Poulsen et al., 2013; Saber et al., 2012, 2013).
The consistency in doses and time points across many studies enabled
comparison of responses after exposure to different nanomaterials.
The doses reflect pulmonary deposition inmice after 1, 3, and 9working
days of 8 h at the Danish occupational exposure limit of 3.5 mg/m3 for
Printex90 carbon black particles (Bourdon et al., 2012b). Studies inves-
tigatingpersonal exposure to CNT in occupational environments report-
ed human exposure levels ranging from non-detectable up to 1 mg/m3

(Methner et al., 2010; Dahm et al., 2013; Lee et al., 2014). However,
most levels were in the range of 10–300 μg/m3 (Hedmer et al., 2014;
Han et al., 2008; Lee et al., 2010; Methner et al., 2012; Birch et al.,
2011). Erdely et al. reported workplace exposure levels up to 10.6 μg/
m3, resulting in a calculated deposited dose of approximately 4.07 μg/
day in a human, equivalent to 2 ng/day in the mouse (Erdely et al.,
2013). Thus, although within dose ranges of other instillation/aspi-
ration studies (Park et al., 2009; Porter et al., 2010; Shvedova et al.,
2008; Snyder-Talkington et al., 2013), the doses used in present
study are to be considered high in a workplace environment.

Preparation of instillation medium and exposure stock

CNTs were suspended by sonication in NanoPure water contain-
ing 2% serum collected from C57BL/6 mice. The particle suspensions
(3.24mg/ml) were sonicated using a Branson Sonifier S-450D (Branson
Ultrasonics Corp., Danbury, CT, USA) equipped with a disruptor horn
(Model number: 101-147-037). Total sonication time was 16 min at
40 W. During the sonication procedure the samples were continuously
cooled on ice. Vehicle controls contained NanoPure water with 2%
serum and were sonicated as described for the CNT suspensions.

Animal handling and exposure

Female C57BL/6 mice at the age of 5–7 weeks from Taconic (Ry,
Denmark) were acclimatized for 1–3 weeks before the experiment. All
mice were fed on Altromin (no. 1324, Christian Petersen, Denmark)
and had access to water ad libitum during the whole experiment. The
mice were housed in groups of up to 10 animals in polypropylene
cages with sawdust bedding and enrichment at controlled temperature
21 ± 1 °C and humidity 50 ± 10% with a 12-h light/12-h dark cycle. At
8 week of age, groups of 9 C57BL/6 mice were exposed to 0, 18, 54 or
162 μg of CNTSmall or CNTLarge via intratracheal instillation (Jacobsen
et al., 2009; Saber et al., 2012). Histological analyses and Transmission
Electron Microscopy (TEM) were performed on 3 dedicated animals
from each dose group. In brief, the mice were anesthetized with 4%
isoflurane until fully relaxed and 2.5% during the instillation. Vehicle
controls were intratracheally instilled with NanoPure water with 2%
serum sonicated as described for the CNT suspensions. The mice were
kept on their backs at a 40-degree angle during the entire procedure.
The doses (18, 54 and 162 μg of CNTSmall or CNTLarge) were administered
via a single intratracheal instillation. A 50 μl suspension was instilled
followed by 150 μl air with a 250 μl SGE glass syringe (250F-LT-GT,
MicroLab, Aarhus, Denmark). Control animals were instilled with vehi-
cle (NanoPure water with 2% serum). After the instillation the catheter



Table 1
Physiochemical properties of CNTSmall and CNTLarge.

MWCNT Code Producer CNT length
(±SD)

CNT diameter
(±SD)

BET
(m2/g)

Impurities
(wt.%)

CNTSmall NRCWE-026 Nanocyl (NC-7000) 0.85 ± 0.457 μm 11 ± 4.5 nm 245.8 13
CNTLarge NM-401 IO-LE-TECNanomaterials

(CP-0006-SG)
4.05 ± 2.40 μm 67 ± 26.2 nm 14.6 3

Data is obtained from analyses performed in the present study and in The Nanogentox group (2013).
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was removed, breathing was observed in order to assure that the deliv-
ered material did not block the airways.

At 1, 3 or 28 days post-instillation, the mice were anesthetized by
subcutaneous injection of 0.2 ml of Hypnorm® (fentanyl citrate
0.315 mg/ml and fluanisone 10 mg/ml, Janssen Pharma) and
Dormicum® (Midazolam 5mg/mL, Roche) in sterile water and killed
by exsanguination via intracardiac puncture.

All animal procedures followed the guidelines for the care and han-
dling of laboratory animals established by Danish laws and regulations.
The Animal Experiment Inspectorate under the Ministry of Justice
approved the study (#2010/561-1779).

BAL fluid and tissue collection

Immediately after withdrawing the heart blood, bronchoalveolar la-
vage (BAL)was performed on 6mice in each dose group by lavaging the
lungs twice using (1ml/25 g bodyweight) salinewater in a 1 or 2ml sy-
ringe. Each lavage consisted of 3 up and down movements performed
slowly (5–10 s each). The second lavage was performed with fresh sa-
line water. Both washings were immediately put on ice. The combined
lavage volume recovered was estimated and BAL fluid and BAL cells
were separated by centrifugation at 4 °C and 400 g for 10 min. The
BAL cell pellet was resuspended in 170 μl medium (HAMS F12 (GIBCO
#21765) with 10% FBS) and stored at −80 °C. The lavaged lung lobes
were removed and snap-frozen in cryotubes in liquid N2 and stored at
−80 °C for later microarray and qRT-PCR experiments. For TEM imag-
ing, the lungs were fixed in situ by cannulating the trachea and deliver-
ing 2% glutaraldehyde in 0.05M cacodylate buffer (pH 7.2) at a constant
fluid pressure of 30 cm before the thorax was opened. The fixative was
mixed from glutaraldehyde (SPI 230 Supplies #02608) and sodium
cacodylate (Sigma-Aldrich #C4945). Thereafter, the lungs were excised
and immersed in 2% glutaraldehyde 0.05 M cacodylate buffer (pH 7.2)
and stored at 5 °C until further processing. For the histological examina-
tion, thefixed lungs from two randomly selected animals from the vehi-
cle control and the high-dose CNTSmall or CNTLarge groups were
embedded in paraffin, sectioned in 4–6 μm sections and stained with
hematoxylin and eosin (HE) or trichrome for histological examination.

Bronchoalveolar lavage cell counts

For determination of bronchoalveolar lavage (BAL) cell composition,
cells in 50 μl suspension were collected on microscope slides by centri-
fugation at 10,000 rpm for 4 min in a Cytofuge 2 (StatSpin, Bie and
Berntsen, Rødovre, Denmark). The slides were fixed with 96% ethanol
and stained with May–Grünwald–Giemsa stain. The cell type composi-
tion of BAL was determined on 200 cells and the total number of cells
was determined by the Nucleo Counter (Chemometec, Allerød,
Denmark) Live/dead assay according to themanufacturer's instructions.

The statistical analyses on BAL cell counts were performed in SAS
version 9.3 (SAS Institute Inc., Cary, NC, USA). With the exception of
day 28 for lymphocytes, no differences in controls at the separate days
were identified and they were pooled. We decided to pool the lympho-
cyte controls in order to maintain consistency. Statistical significance
was calculated using a parametric two-way ANOVA with a post-hoc
Tukey-type experimental comparison test. In case of interaction
between dose and time, the data was separated in time points and a
one-way ANOVAwith a post-hoc Tukey-type experimental comparison
testwas performed. In caseswhen the data, after log transformation, did
notmeet the parametric requirements, non-parametric tests were used.

Thermal gravimetric analysis

Thermal gravimetric analysis (TGA) determines the weight loss of a
material as a function of temperature whilst derivative thermal gravi-
metric analysis (DTG) gives rate of change of mass. From a TGA curve
it is possible to determine the mass % of organic content and to deter-
mine the thermal stability of the samples. TGA was performed on a
Perkin TGA instrument for (CNTSmall) and a Mettler TGA (for CNTLarge).
The samples were heated from 25 to 950 °C at a heating rate of
10 °C/min on an alumina holder under the flow of air of 20 ml/min.

Brunauer–Emmett–Teller (BET) surface area analysis

The samples were degassed under vacuum for 10 h at 80 °C and
nitrogen absorption isotherms were measured at liquid nitrogen tem-
perature (77 K) using aMicromeritics ASAP2020 volumetric adsorption
analyzer. The Brunauer–Emmett–Teller equation was used to calculate
the surface area from adsorption data obtained in the relative pressure
(p/po) range of 0.05 and 0.3. The total pore volume was calculated
from the amount of gas adsorbed at p/po = 0.99. Pore size distribution
curves were derived using Barrett–Joyner–Halenda (BJH) assuming a
cylindrical pore model.

Light microscopy

One micrometer semi-sections of embedded lung were cut with a
Zeiss Ultracut UCT ultra-microtome, stained with 1% toluidine blue in
1% borax and imaged using a Zeiss AxioImager Z1widefieldmicroscope.

Scanning Electron Microscopy

Five microliters of CNTSmall or CNTLarge in exposure medium was
deposited on an Al foil covered Scanning Electron Microscopy (SEM)
stub. The size and agglomeration was determined by SEM using a
NVISION 40 Zeiss Cross-Beam Focused Ion Beam machine, operated at
10 kV accelerating voltage, equipped with a high resolution Gemini
Field Emission Gun scanning electron microscope column and with an
Oxford INCA 350 Xact Energy Dispersive X-Ray Spectrometer having
an energy resolution of 129 eV at the Mn kα line.

Transmission Electron Microscopy

PristineMWCNT and lung sections frommice exposed to CNTSmall or
CNTLarge were visualized using TEM. The fixed lung was cut into small
pieces and a standard Electron Microscope embedding procedure was
carried out as described in Kobler et al. (2014). Samples were rinsed
in 0.15 M phosphate buffer followed by a 0.15 M sodium cacodylate
wash. Post-fixation and osmoficationwere performed in 2% osmium te-
troxide in 0.05 M potassium ferricyanide for 2 h. After osmofication,
samples were rinsed in deionized water and placed in 1% uranyl acetate
in water overnight at 5 °C. The following day samples were gradually
dehydrated in ethanol and lastly in propylene oxide. Embedding was
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performed in propylene oxide diluted Epon, until 100% Epon 812 was
used before polymerization at 60 °C for 24 h. Samples were cut into
approximately 80 nm sections for TEM using an ultramicrotome with
a diamond knife. Sections were stained with uranyl acetate and lead
citrate, and imaged using a CM 100 BioTwin instrument from Philips
operated at 80 kV accelerating voltage.

Microarray experiment

Total RNA extraction for microarray analysis.
Total RNAwas isolated from lung tissue of 144mice in total (n=6mice
per dose group). TRIzol reagent (Invitrogen, Carlsbad, CA, USA) was
used for RNA isolation and purification was done using the RNeasy
MiniKit (Qiagen, Mississauga, ON, Canada) as specified by themanufac-
turer. An on-column DNase treatment was applied (Qiagen, Mississau-
ga, ON, Canada). All RNA samples showing A260/280 ratios between
2.0 and 2.15 were further analyzed for RNA integrity using an Agilent
2100 Bioanalyzer (Agilent Technologies, Mississauga, ON, Canada).
Only RNAwith integrity numbers above 7.0 was used in the microarray
hybridization experiment. All RNA samples (6 per group) passed the
quality control. Total RNA was stored at −80 °C until analysis (Husain
et al., 2013; Poulsen et al., 2013).

Hybridization.
Microarray hybridization was performed using 200 ng total RNA from
each sample (n= 6 per group) on Agilent 8 × 60 K oligonucleotide mi-
croarrays (Agilent Technologies Inc., Mississauga, ON, Canada) as de-
scribed previously (Poulsen et al., 2013). Data were acquired using
Agilent Feature Extraction software version 9.5.3.1.

Statistical analysis of microarray data.
A reference randomized block design (Kerr, 2003; Kerr and Churchill,
2007), with the sample labeled with Cy5 and the reference labeled
with Cy3, was used to analyze gene expressionmicroarray data. LOcally
WEighted Scatterplot Smoothing (LOWESS) (Cleveland, 1979) regres-
sionmodelingmethodwas used to normalize data and statistical signif-
icance of the differentially expressed genes was determined using
MicroArray ANalysis Of VAriance (MAANOVA) (Wu et al., 2003) in R
statistical software (http://www.r-project.org). The Fs statistic (Cui
et al., 2005), a shrinkage estimator for the gene-specific variance com-
ponents, was used to test the treatment effects. The permutation meth-
od (30,000 permutations with residual shuffling) was used to estimate
the P-values for all the statistical tests, and these P-values were then ad-
justed for multiple comparisons by using the false discovery rate multi-
ple testing correction (Benjamini and Hochberg, 1995). Fold change
calculations were based on the least-square means. Genes showing ex-
pression changes of at least 1.5 fold in either direction compared to their
matched controls and having P-values of less than or equal to 0.05
(P ≤ 0.05) were considered as significantly differentially expressed
and were used in the downstream analysis.

Functional and pathway analysis of differentially expressed genes.
The Database for Annotation, Visualization and Integrated Discovery
(DAVID) v6.7 (Huang et al., 2009a,b) was used for the functional
Gene Ontology (GO) analysis of the differentially expressed genes.
Benjamini–Hochberg corrected GO biological processes with a Fisher's
exact P ≤ 0.05 were considered to be significantly enriched. Specific
biological functions, pathways and networks associated with the dif-
ferentially expressed genes were identified using Ingenuity Pathway
Analysis (IPA, Ingenuity Systems, Redwood City, CA, USA). Functions,
pathways and networks with a Benjamini–Hochberg Multiple Testing
Correction P-value of ≤0.05 were considered for discussion. The path-
way analysis methods employed enabled the extraction of biologically
meaningful information from a long list of differentially expressed
genes.
qRT-PCR validation

For validation of microarray results, 8 genes were evaluated by qRT-
PCR at all doses and time points. These genes (Saa3, Il1α, Il6, Cxcl2, Ccl2,
Hmox1,Mmp9 and Sod2) showed high differential regulation at a mini-
mum of one dose or time point, and were involved in inflammation,
acute phase response, protection from ROS or extracellular matrix
remodeling.

Total RNA extraction for qRT-PCR validation.
Total RNAwas isolated from lung tissue of 144mice in total (n=6mice
per dose group) using the MagNA Pure Compact RNA Isolation kit
(Roche) according to the manufacturer's protocol. In brief, the RNA iso-
lation procedure is based on the MagNA Pure Magnetic Glass Particle
(MGP) Technology (Roche): nucleic acids are bound on the surfaces of
MGPs whereas unbound molecules are removed by several washing
steps. Genomic DNA molecules are degraded by incubation with
DNase. Total RNA was stored at−80 °C until analysis.

cDNA synthesis.
cDNA synthesiswas performedusing the Enhanced AvianHSRT-PCR kit
(Sigma-Aldrich), with total RNA as template, as described in the
manufacturer's protocol. A total of 500 ng was used for each cDNA syn-
thesis. The heating cycle was 25 °C (15 min)/50 °C (50 min)/85 °C
(5 min) and the obtained cDNA solutions were further diluted to a
final concentration of 10 ng/μl.

Real-time RT-PCR.
The expression of the target genes, compared to a reference (GAPDH),
was determined with real time-PCR using a LightCycler® 480 Instru-
ment (Roche) according to themanufacturer's protocol. The relative ex-
pression was calculated using the Livak–Schmittgenmethod (Livak and
Schmittgen, 2001). The statistical analyses were performed inMicrosoft
Excel through Mathematica (version 8, Wolfram Research). Statistical
significance was calculated using a parametric one-way ANOVA. Re-
gression analysis between PCR and microarray data was performed in
SAS version 9.3 (SAS Institute Inc., Cary, NC, USA).

ROS generating ability using dichlorodihydrofluorescein

The generation of ROS was assessed using 2′,7′-dichlorofluorescein
diacetate (DCFH-DA) (Invitrogen) as previously described by Jacobsen
et al. (2008). CNTSmall and CNTLarge suspensions were prepared with
Hank's buffered saline solution instead of serum at doses: 0, 1.4, 2.8,
5.6, 11.3, 22.5, 45, 90 and 135 μg/ml.

Comet analysis

The comet analysis was performed on lung tissue based on a previ-
ously published protocol (Jackson et al., 2011a), which has been modi-
fied and validated to a fully-automated scoring system (IMSTAR). This
new procedure for scoring DNA damage, quantified as %DNA in tail
and tail length, has recently been published (Jackson et al., 2013). The
statistical analyses were performed in SAS version 9.3 (SAS Institute
Inc., Cary, NC, USA). No differences in controls at the separate days
were identified and theywere pooled. After careful evaluation, 3 control
samples were excluded due to unusually high levels of DNA strand
breaks and apoptotic cells. This is likely due to incorrect thawing proce-
dure, as previously described in Jackson et al. (2013). One belonged to
the day 3 control group, the last 2 belonged to the 28 days group. Statis-
tical significance was calculated using a parametric two-way ANOVA
with a post-hoc Tukey-type experimental comparison test. In case of in-
teraction between dose and time, the data was separated in time points
and a one-way ANOVA with a post-hoc Tukey-type experimental
comparison test was performed. In cases where the data, after log

http://www.r-project.org
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transformation, did not meet the parametric requirements, non-
parametric tests were used.

Results

Mice were exposed by intratracheal instillation to three different
doses (18, 54 and 162 μg/mouse) of two MWCNTs: CNTSmall (NRCWE-
026) and CNTLarge (MWCNT NM-401), alongside vehicle controls. Lung
tissue was collected 1, 3 and 28 days after the exposure.

MWCNT characteristics

Table 1 summarizes the physicochemical characterization data.

CNTSmall

The average length of CNTSmall was 0.85±0.46 μm(mean±SD) and
the average width was 11 ± 4.5 nm (mean ± SD) (Kobler et al., 2014;
The Nanogentox group, 2013). The CNTSmall was stable up to 400 °C in
thermogravimetric analysis (TGA), and at 800 °C, 13% of the mass still
Fig. 1.Microscopy imaging of CNTSmall and CNTLarge. (A) SEM image of CNTSmall in instillationme
(B) SEM image of CNTLarge in instillationmedium. The impurities and salt crystals observed prob
of the alveolar lumen 1 day after exposure at dose 162 μg to CNTSmall and CNTLarge, respectively.
162 μg CNTSmall. CNTSmall engulfed in vesicles (black arrow) were observed. (F) TEM image of C
posure to 162 μg CNTLarge. CNTLarge was observed both as engulfed in vesicles (black arrow) an
remained (Supplementary Fig. 1.A), most likely metal oxides since
chemical analysis of CNTSmall from the same batch by Jackson et al.
(2014) showed that the reported main components of CNTSmall

(NRCWE-026) include: C (84.4%), Al2O3 (14.97%), Fe2O3 (0.29%) and
CoO (0.11%). The Brunauer–Emmett–Teller surface area (BET) of
CNTSmall was 245.8 m2/g, most of this being micro-pores.

The pristine CNTSmall was visualized using Transmission Electron
Microscopy (TEM). The pristine nanotubes appeared curly, varied in
their lengths (Supplementary Figs. 2.A–B), and both agglomerated and
single CNTSmall were observed. In their agglomerated state, the CNTSmall

appeared highly entangled and the single tube-like structurewas no lon-
ger visible. Scanning ElectronMicroscopy (SEM) of CNTSmall in the expo-
sure medium revealed mainly agglomerated and entangled MWCNTs
(Fig. 1.A). Impurities and protein matter from the exposure medium
were observed throughout the samples, probably originating from con-
tamination during synthesis and from the dried exposure medium.

Light microscope images of CNTSmall in the alveolar region showed
uniform dispersion and distribution of CNTSmall on day 1 after the
exposure to 162 μg (Fig. 1.C). TEM analysis of interactions between
dium. The impurities and proteinmattermay originate from the dried instillationmedium.
ably originate from the dried instillationmedium. (C) and (D) are lightmicroscopy images
(E) TEM image of CNTSmall interacting with cells of the lung lining 3 days after exposure to
NTLarge interacting with a cell with morphological traits of a macrophage 3 days after ex-
d as free CNTLarge in the cytoplasm (red arrow).

Image of Fig. 1
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CNTSmall and cells in the lung lining at post-exposure day 3 (Fig. 1.E and
Supplementary Fig. 2.C) showed curled and agglomerated CNTSmall

engulfed in vesicles in the cytoplasm.

CNTLarge
The average length of CNTLarge was 4.05 ± 2.4 μm (mean± SD) and

the average width was 67± 26.2 nm (mean± SD) (Kobler et al., 2014;
The Nanogentox group, 2013) (Table 1). Based on the standard devia-
tion, 5% of the CNTLarge tubes are larger than 8847.8 nm. TGA showed
stability of the CNTLarge sample until 650 °C. The total carbon was
decomposed between 650 and 950 °C, leaving a mass of 3% after a
complete decomposition (Supplementary Figs. 1.B–C). The chemical
composition of CNTLarge from the same batch has been determined by
Jackson et al. (2014). The reported main components of CNTLarge (NM-
401) included: C (99.7%), P2O5 (0.14%), CO3 (0.08%) and Fe2O3

(0.05%). The CNTLarge sample had a low volume of N2 adsorption
under a relative pressure of 0.3, which implies that the sample
possessed a small (14.6 m2/g) non-porous surface area.

TEM imaging of the pristine CNTLarge revealed MWCNT that ap-
peared long and straight (Supplementary Figs. 3.A–B). Different levels
of agglomerationwere observed, butmonomers of CNTLarge were visible
in the bundle and were straight. SEM of CNTLarge in the exposure medi-
um (Fig. 1.B) showed long and straight CNTLarge in tangled up bundles
with a majority of them being longer than 1 μm. The observed spherical
particles probably originated from the dried exposure medium.

Light microscope imaging of the alveolar region showed well dis-
persed CNTLarge in the entire region (Fig. 1.D). TEM imaging of the
lung lining clearly showed CNTLarge interacting with macrophage-like
cells (Fig. 1.F and Supplementary Fig. 3.C). A close-up of the cytoplasm
revealed both single and bundles of CNTLarge within vesicles. Some of
these vesicles appeared to be penetrated by the CNTLarge. In addition,
visible damage caused by CNTLarge displacement andwear of themicro-
tome diamond knife was observed. Such displacement and damagewas
not observed with the CNTSmall (Kobler et al., 2014).

Bronchoalveolar lavage fluid cell type composition

BAL fluid collected from MWCNT-instilled mice 1, 3 and 28 days
after exposure was used to assess the recruitment of inflammatory
cells into the lung lumen. The total numbers of cells, neutrophils,macro-
phages, eosinophils and lymphocytes cells are shown in Supplementary
Table 1. For both MWCNTs, the inflammatory response was dominated
by large infiltrations of neutrophils. The largest total influx of neutro-
phils was seen on post-exposure day 3, but the highest % of neutrophils
in the total BAL fluid cells was observed at day 1 (Fig. 2). Persistent
Fig. 2.Neutrophil levels in % of the total BAL fluid cells following exposure to CNTSmall and CNTLa
mice are mean of 24–25 mice. Error bars denote SEM. ***Statistically significantly different from
increases in neutrophil levels were observed up to 28 days post-
exposure. For CNTSmall instilled mice, the neutrophil numbers at the
162 μg dose were 80.1 × 103 cells, 457 × 103 cells more than controls
and 34.2 × 103 cells on post-exposure days 1, 3 and 28, respectively
(Supplementary Table 1). Whereas, following high dose CNTLarge expo-
sure the neutrophil numbers were 108.6 × 103 cells, 158.1 × 103 cells
and 77.4 × 103 cells more than in controls on post-exposure days 1, 3
and 28, respectively (Supplementary Table 1). Overall, the cell type
compositions of BAL were similar after exposure to the two MWCNTs,
except for the eosinophil influx, which, especially at day 28, was higher
in response to CNTLarge. Similar to an earlier Mitsui-7 study (Poulsen
et al., 2013), an inverse dose–response relationship was observed for
eosinophils. A similar trend was observed at day 3 for total number of
lymphocytes. The great reduction in eosinophils and lymphocytes at
the higher doses compared to the 18 μg dose has been addressed in
our earlier publication (Poulsen et al., 2013).

Pulmonary gene expression analysis after exposure to CNTSmall and CNTLarge

Overview of the expression changes
Complete DNA microarray results for CNTSmall and CNTLarge expo-

sures are available through the Gene Expression Omnibus at NCBI
(http://www.ncbi.nlm.nih.gov/geo/, accession number: GSE35284).
We identified 6639 unique differentially expressed genes represented
by 9270 probes (false discovery adjusted P b 0.05 and the relative
change in expression (fold change) was at least ±1.5 in either direc-
tion) after CNTSmall exposure, and 5972 genes represented by 8450
probes after CNTLarge exposure (Supplementary Table 2). These repre-
sent genes that were significantly different from control in at least one
dose or time point for either CNT type. For both MWCNTs, a clear
dose–response was observed at all time points. A time-dependency
was observed with a peak at day 3 (Fig. 3). We tabulated the number
of differentially regulated genes for CNTSmall for the three different
post-exposure time points. On day 1, a total of 197 genes (117 down-
regulated and 80 up-regulated), 848 genes (404 down-regulated and
444 up-regulated) and 2186 genes (1157 down-regulated and 1029
up-regulated) were differentially expressed in the 18, 54 and 162 μg
dose groups, respectively (Fig. 3.A). On day 3, a total of 652 genes
(193 down-regulated and 459 up-regulated), 2059 genes (866 down-
regulated and 1193 up-regulated) and 5275 genes (2713 down-
regulated and 2562 up-regulated) were differentially expressed in the
18, 54 and 162 μg dose groups, respectively (Fig. 3.B). On day 28, a
total of 17 genes (3 down-regulated and 14 up-regulated), 37 genes
(12 down-regulated and 25 up-regulated) and 111 genes (5 down-
regulated and 106 up-regulated) were differentially expressed in the
rge. Values for MWCNT exposedmice aremean of 5–6mice. The values for vehicle instilled
vehicle instilled mice, P b 0.001.

http://www.ncbi.nlm.nih.gov/geo/
Image of Fig. 2


Fig. 3. Total number of differentially expressed genes (P b 0.05 and fold change±1.5). Green: Low dose (18 μg). Blue:Mediumdose (54 μg). Red: High dose (162 μg). (A) CNTSmall at day 1.
(B) CNTSmall at day 3. (C) CNTSmall at day 28. (D) CNTLarge at day 1. (E) CNTLarge at day 3. (F) CNTLarge at day 28.
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18, 54 and 162 μg dose groups, respectively (Fig. 3.C). The number of
differentially regulated genes following CNTLarge exposure on day 1
was a total of 32 genes (8 down-regulated and 24 up-regulated), 573
genes (189 down-regulated and 384 up-regulated) and 1491 genes
(729 down-regulated and 762 up-regulated) in the 18, 54 and 162 μg
dose groups, respectively (Fig. 3.D). On day 3, a total of 409 genes
(153 down-regulated and 256 up-regulated), 1581 genes (669 down-
regulated and 912 up-regulated) and 5351 genes (2798 down-
regulated and 2553 up-regulated) were differentially expressed in the
18, 54 and 162 μg dose groups, respectively (Fig. 3.E). On day 28, a
total of 2 genes (2 down-regulated and 0 up-regulated), 4 genes (2
down-regulated and 2 up-regulated) and 366 genes (89 down-
regulated and 277 up-regulated) were differentially expressed in the
18, 54 and 162 μg dose groups, respectively (Fig. 3.F). A direct compar-
ison of the total number of genes regulated in lung tissue after exposure
to CNTSmall and CNTLarge, respectively, is shown in Supplementary Fig. 4.
At the high dose exposure on post-exposure day 3, there was a high
concordance between the genes differentially expressed after exposure
to the two MWCNTs. At the lower doses and other time points, we
observed less than 50% overlapping genes between the two groups.
Differentially expressed genes following exposure to the high dose of
CNTLarge were 4 times higher than CNTSmall on day 28, which may indi-
cate a more sustained toxic response resulting from exposure to long,
thick and straight MWCNT.
Gene ontology analysis of biological processes
In order to identify themes in the global pulmonary gene expression

patterns caused by the twoMWCNTs,we employed gene ontology (GO)
classification through the Database for Annotation, Visualization and
Integrated Discovery (DAVID) (Huang et al., 2009b,a). The common
and unique biological processes affected by CNTSmall and CNTLarge are
shown in Supplementary Figs. 5–7.

On post-exposure day 1 we identified two overlapping biological
processes perturbed following exposure to CNTSmall and CNTLarge:
defense response [GO:0006952] and cell motion [GO:0048870]. This in-
dicates that inflammation and cell motility are common responses fol-
lowing exposure to CNTs at post-exposure day 1 and that they are not
influenced by length or metal contaminants. Five unique biological pro-
cesses were identified following high dose CNTSmall exposure on post-
exposure day 1 (Supplementary Fig. 5.A), whereas exposure to CNTLarge
resulted in unique enrichment of two biological processes at the medi-
um and the high dose, and regulation of nine processes uniquely
enriched at the high dose only (Supplementary Fig. 5.B). Although a
higher prevalence of perturbed biological processes was observed
following CNTLarge exposure compared to CNTSmall at post-exposure
day 1, they mainly grouped in similar categories: Inflammatory re-
sponse, cell motility and cell cycle processes. However, the biological
process involving cell death was only perturbed after CNTLarge exposure
(Supplementary Fig. 5.B). Similarly, at 3 days post-exposure, high con-
cordance in enriched GO biological processes was observed following
CNTSmall and CNTLarge exposure, with seven overlapping processes iden-
tified: cell cycle [GO:0007049], immune response [GO:0006955], de-
fense response [GO:0006952], DNA metabolic process [GO:0006259],
cytoskeleton organization [GO:0007010], microtubule-based process
[GO:0007017], and cell activation [GO:0001775]. Exposure to CNTSmall

also resulted in unique enrichment of 10 biological processes across
the dose range at post-exposure day 3 (Supplementary Fig. 6.A),
whereas four uniquely regulated processes were identified following
CNTLarge exposure (Supplementary Fig. 6.B). Similar to the responses
seen at post-exposure day 1, these unique biological processes primarily
grouped under the same categories; inflammatory response, cell motil-
ity and cell cycle processes. However, in contrast to post-exposure day
1, we noted a unique regulation of cell death following exposure to
CNTSmall at post-exposure day 3. On post-exposure day 28, no overlap-
ping GO biological processes were observed following CNTSmall

and CNTLarge. Immune response [GO:0006955] was perturbed at
both low and medium doses following exposure to CNTSmall (Supple-
mentary Fig. 7.A); whereas, perturbations in response to wounding
[GO:0009611], ribonucleoside triphosphate metabolic process

Image of Fig. 3
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[GO:0009199] and hydrogen transport [GO:0006818] (Supplementary
Fig. 7.B) were observed at the high dose following CNTLarge exposure.
This indicates a common sustained inflammatory response that persists
until post-exposure day 28 following exposure to both CNTSmall and
CNTLarge. In addition to the general observations of high similarities in
perturbedGObiological processes, we also noted that CNTSmall exposure
altered expression of genes involved in cell cycle and microtubule
assembly, indicative of cell cycle arrest and structural damage at post-
exposure day 1. Instead, CNTLarge exposure resulted in activation of
immune responses, suggesting that the immediate responses to the
two types of nanotubes are different and that there is a delay in the
onset of immune responses following exposure to CNTSmall.

Property-response comparison
From the overall analysis of perturbed biological processes identified

through GO,we constructed a property-response comparison of the five
most perturbed biological processes: cell cycle [GO:0007049], immune
Fig. 4. Property-response comparison. Change in the expression of genes in five highly regulate
size of changes in expression after exposure to CNTLarge at the 162 μg dose at post-exposure da
metabolic process (DNA-MP), immune response and response to wounding. Significant (P b

Dark green: Fold change≤−3.000. Orange: Fold changebetween 2.000 and 2.999. Red: Fold cha
−1.999 and 1.999 or not significant expression.
response [GO:0006955], response to wounding [GO:0009611], DNA
metabolic process [GO:0006259] and microtubule-based process
[GO:0007017] (Fig. 4). This allowed us to identify the specific expres-
sion changes associated with selected ontologies across the two types
of CNTs. In order to identify effects related to the physicochemical prop-
erties of CNTLarge, we organized the genes in the biological processes
based on their expression following exposure to high dose of CNTLarge
at post-exposure day 3. A high concordancewas found between the dif-
ferentially regulated genes in all five biological processes in response to
both CNT types especially at the early time points. Underlying this ob-
servation is the low number of oppositely regulated genes observed.
Minor differences in the potency of CNTSmall and CNTLarge on gene ex-
pression were noted in immune response and response to wounding
at the high dose on day 3. Although similar genes were affected, these
genes were more strongly induced or repressed following CNTLarge ex-
posure. This indicates effects related specifically to the physicochemical
properties of CNTLarge. However, at the low dose at post-exposure day 3,
d selected GO biological processes relative to control mice. The genes are organized by the
y 3. GO biological processes selected: Cell cycle, microtubule-based process (M-BP), DNA
0.05) gene expression color coding: Light green: Fold change between −2.999 and −2.
nge between 3.000 and9.999. Dark red: Fold change≥ 10.000. Gray: Fold change between

Image of Fig. 4
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a much higher proportion of genes were differentially expressed after
CNTSmall exposure compared to CNTLarge. This could, in turn, indicate a
greater effect of CNTSmall compared to CNTLarge at low doses. We identi-
fied a cluster of uniquely changed genes on day 28 after exposure to
CNTLarge in response to wounding. This indicates a sustained or delayed
effect specific for the physicochemical properties of CNTLarge. This clus-
ter included the genes Chi3l4, Slc7a2, Ccr2, Lipa, Olr1, LOC620515,
Chi3l3, Proz, Tff1 and Gp9. There is little cohesion between these genes
in the scientific literature, and no clear conclusion can be drawn based
on the cluster at this time.
Functional analysis
The functional significance of the GO changes was determined using

Ingenuity Pathway Analysis (IPA) (Ingenuity® Systems, www.
ingenuity.com). The individual enriched functions in IPA were filtered
by: 1) removing redundant functionswith overlapping genes, and2) re-
moving functions that were not directly relevant to the present study
(e.g. dermal diseases and ophthalmic diseases). In general, we observed
high similarities between the enriched functions across time point and
doses,which confirm the results of theGO analysis of biological process-
es. The top five most significantly affected high-level functions after
CNTSmall or CNTLarge exposure are shown in Fig. 5. These top changing
functions only differed by one function: ‘Inflammatory response’
(CNTLarge) and ‘hematological system, development and function’
(CNTSmall). A closer analysis revealed that the function ‘hematological
system, development and function’ was associated with annotation of
terms such as “activation of leukocytes” and “migration of phagocytes”,
indicating that the enrichment of this biological function was based on
the differential regulation of inflammatory genes. For both MWCNTs,
analysis of the genes differentially expressed under these top five func-
tions revealed significant impact on processes involved in the immune
and acute phase response, especially regarding ‘hematological system,
development and function’, ‘inflammatory response’ and ‘cellular
movement’. Indeed, changes in the mRNA levels of several chemokine
(C–C motif) ligands (CCLs), chemokine (C–X–C motif) ligands (CXCLs),
serine protease inhibitors (SERPINs), tumor necrosis factor family
Fig. 5. Top perturbed functions identified in IPA. The histogram is based on the top five enrich
exposure to CNTSmall or CNTLarge. The functions: cancer, cellular growth and proliferation, and
the cellular movement function was ranked 4th after exposure to CNTLarge, whereas it was ra
to CNTLarge, but ranked 10th after exposure to CNTSmall. The 4th ranked function after CNTSmal

function revealed a strong association with annotation terms related to the inflammatory resp
genes and acute phase genes, e.g. the serum amyloid A proteins
(SAAs), were identified in all of the perturbed functions. Several of
these genes were among the most up-regulated overall, but common
for these were also that the changes in expression occurred at the
early time points and were not sustained up to 28 days. Supplementary
Table 3 lists the most differentially expressed genes at every time point
and dose. A commonality for many of these genes is their involvement
in the immune and acute phase responses. Serum amyloid A 3 (Saa3),
a well characterized acute phase gene, had the largest fold change of
all genes after exposure to both MWCNTs, peaking at 297-fold above
controls on day 3 for the medium dose of CNTSmall and at 184-fold for
the high dose on day 3 for CNTLarge (Supplementary Table 3). Looking
beyond the top changing functions, we observed a difference in the ex-
pression of genes involved in ‘free radical scavenging’ (Supplementary
Fig. 8). Exposure to CNTLarge, but not CNTSmall, resulted in altered expres-
sion of genes belonging to this function at the earliest time point. How-
ever, by day 3, this function was similarly enriched for both MWCNTs.
Similar differences in the kinetics and delayed onset were also observed
with immune response following CNTSmall.
Pathway analysis
The pathways with the largest number of differentially expressed

genes caused by exposure to the high dose of CNTSmall and CNTLarge
are shown in Table 2 for all time points. The pathway analysis was
conducted in IPA. A general high overlap of perturbed pathwayswas ob-
served across CNTSmall and CNTLarge exposure. On post-exposure day 1,
LXR/RXR activation, atherosclerosis signaling, and acute phase response
signaling were highly regulated following exposure to both MWCNTs,
indicating important effects of MWCNT exposure on lipid/cholesterol
homeostasis and the inflammatory response. The same trend for high
concordance was observed on post-exposure day 3, with hepatic fibro-
sis/hepatic stellate cell activation and dendritic cell maturation regulat-
ed across bothMWCNT types. Although the other significantly enriched
pathways differed from CNTSmall to CNTLarge exposure, they commonly
involved lipid/cholesterol homeostasis and the inflammatory response,
thus linking to the response seen at the early time point. Based on this
ed functions (depicted with the numbers 1–5) in female C57BL/6 mice after intratracheal
cell death and survival were ranked in the top 3 following exposure either MWCNT, but
nked 5th for CNTSmall exposures. Also, inflammatory response ranked 5th after exposure
l exposure was hematological system, development and function. A closer analysis of this
onse.

http://www.ingenuity.com
http://www.ingenuity.com
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Table 2
Top 6 canonical pathways and networks in IPA affected by CNTSmall or CNTLarge.

Dose
group

CNTSmall CNTLarge

Canonical pathways Networks Canonical pathways Networks

Name #
genes

Name #
genes

Name #
genes

Name #
genes

Day 1,
162 μg

LXR/RXR activation 26 Carbohydrate metabolism, lipid
metabolism, small molecule biochemistry

32 Atherosclerosis
signaling

26 Cell death and survival, cancer,
hematological disease

30

Atherosclerosis
signaling

24 Organ morphology, lymphoid tissue
structure and development

31 Acute phase response
signaling

32 Gene expression 29

Oxidative ethanol
degradation III

7 Cell morphology, organismal
development

31 LXR/RXR activation 25 Cell-to-cell signaling and interaction,
tissue development, cardiac
enlargement

27

Hepatic
fibrosis/hepatic
stellate cell activation

27 Small molecule biochemistry, cellular
assembly and organization, DNA
replication recombination and repair

29 B cell development 10 Cellular movement, immune cell
trafficking, cell signaling

27

Pyrimidine
ribonucleotides
interconversion

8 Respiratory disease, RNA
post-transcriptional modification

29 Calcium-induced T
lymphocyte apoptosis

14 Post-translational modification, drug
metabolism, lipid metabolism

27

Acute phase response
signaling

31 Cancer, hematological disease 29 Retinol biosynthesis 12 Cancer, inflammatory disease 26

Day 3,
162 μg

Aryl hydrocarbon
receptor signaling

62 RNA post-transcriptional modification,
connective tissue disorders

35 Hepatic
fibrosis/hepatic
stellate cell activation

59 Cellular function and maintenance,
cardiac dilation

35

Antigen presentation
pathway

20 Cellular development, tissue
development

35 IL-10 signaling 33 Cell cycle, cellular movement, cellular
assembly and organization

35

Hepatic
fibrosis/hepatic
stellate cell activation

61 Cell death and survival, organ
development

34 Acute phase response
signaling

65 Cellular assembly and organization, cell
cycle, DNA replication recombination
and repair

35

Dendritic cell
maturation

66 Carbohydrate metabolism, small
molecule biochemistry, cellular
movement

34 Dendritic cell
maturation

60 Cellular movement, hematological
system development and function,
immune cell trafficking

34

Crosstalk between
dendritic cells and
natural killer cells

36 Nucleic acid metabolism, small molecule
biochemistry, amino acid metabolism

34 Pyrimidine
deoxyribonucleotides
de novo biosynthesis I

11 Cell morphology, cellular compromise,
cellular growth and proliferation

34

LXR/RXR activation 49 Cellular assembly and organization, DNA
replication recombination and repair, cell
cycle

34 Hypoxia signaling in
the cardiovascular
system

30 Cellular movement 34

Day 28,
162 μg

Hematopoiesis from
pluripotent stem cells

4 Humoral immune response, protein
synthesis, inflammatory response

23 IL-8 signaling 13 Molecular transport, developmental
disorder

25

Primary
immunodeficiency
signaling

4 Amino acid metabolism, molecular
transport, small molecule biochemistry

14 Atherosclerosis
signaling

9 Cancer, cardiovascular system
development and function

23

Cellular movement, hematological
system development and function,
immune cell trafficking

10 Retinol biosynthesis 5 Developmental disorder 22

Cellular development, cellular growth
and proliferation, connective tissue
development and function

10 Triacylglycerol
degradation

4 Connective tissue disorder,
developmental disorder

23

Cell morphology, cellular assembly and
organization, cellular development

9 Chondroitin sulfate
degradation

3 Cardiovascular system development and
function, cellular development, cellular
growth and proliferation

20

Dermatan Sulfate
Degradation

3 Cancer 18

Pathways and networks were identified in IPA and ranked based on their Benjamini–Hochberg Multiple Testing Correction P-value.
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information, a closer analysis of genes involved in cholesterol syn-
thesis and homeostasis was conducted at all doses and time points
for MWCNT exposed mice, which revealed the consistent up-
regulation of several genes involved in the 3-hydroxy-3-methylglu-
taryl-Coenzyme A (HMG-CoA) reductase pathway for both CNT
types at the early time point (Supplementary Table 4). Down-
regulation was also observed in the expression of membrane trans-
porters ATP-binding cassette, sub-family A, member 1 (Abca1) and
in ATP-binding cassette, sub-family G, member 1 (Abcg1) at post-
exposure day 3. Both of these genes are involved in lipid homeostasis
through cholesterol efflux. A linkage to fibrosis was observed
through the regulation of hepatic fibrosis/hepatic stellate cell activa-
tion at the early time points following exposure to CNTSmall and
CNTLarge. Although recognized for their role in hepatic fibrosis,
many of the differentially regulated genes in this pathway play im-
portant roles in pulmonary fibrosis as well.
Finally, only two canonical pathways were perturbed 28 days post-
exposure to CNTSmall; the small number of differentially expressed
genes in each pathway indicates low pathway specificity (Table 2). In
contrast to CNTSmall, genes involved in six pathways were affected
28 days post-exposure to CNTLarge. Interestingly, persistent changes in
the expression of genes involved in inflammatory and atherosclerosis
pathways were observed, indicating possible long-term effects.

Network analysis
Network analysis in IPA was employed to identify key regulatory

genes and molecules. The top five networks at the high dose, days 1
and 3 post-exposure to either MWCNT (Table 2) were merged and net-
work connections were visually depicted (Supplementary Fig. 9). For
CNTSmall exposure, the primary network on post-exposure day 1
consisted of the core nodesMyc, Cdkn1a and Egfr. These genes are all in-
volved in regulation of cellular proliferation and cell cycle; Egfr is also
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highly implicated in fibrosis. Besides the core nodes, a distinct group of
down-regulated genes clustered together (Supplementary Fig. 9.A, red
circle), which belong to the dynein family. On day 3, the core nodes
Tnf and Gpcrwere identified (Supplementary Fig. 9.B). The latter is rep-
resentative of the G protein-coupled receptor proteins, generally in-
volved in signal transduction from the extracellular space to the
cytoplasm. Tnf is amultifunctional proinflammatory cytokine belonging
to the tumor necrosis factor superfamily, involved in the regulation of a
wide spectrum of biological processes. Besides Tnf and Gpcr, several
other small nodes were identified, but no distinct patterns were ob-
served. For CNTLarge exposure, network analysis of post-exposure day
1 gene expression data revealed core nodes centered around Myc,
Nfkb1a, Gpcr and Nfkb complex (Supplementary Fig. 9.C). Myc and Gpcr
are both involved in regulation of cellular proliferation, whereas the
Nfkb genes are important in cytokine production and cell survival. The
network at post-exposure day 3 showed core nodes for Tnf, Myc,
Tgfb1, Igf1r andGsk3b (Supplementary Fig. 9.D). As in the day 1 network,
core node geneswere generally grouped into two categories: regulation
of cellular proliferation (Myc, Tgfb1, Igf1r and Gsk3b) and inflammation
(Tnf). However, most of these genes are highly pleiotropic. Tgfb1,
through the SMAD signaling cascade, is also strongly associated with fi-
brosis. The commongenenodes identified further highlights the general
high degree of similarity seen in the gene expression responses after
CNTSmall and CNTLarge exposure.
Fibrosis gene signature

Fibrosis is a well-established endpoint in MWCNT-induced toxicity
(Aiso et al., 2010; Mercer et al., 2011; Muller et al., 2005; Porter et al.,
2010; Snyder-Talkington et al., 2013). In the present study, fibrosis
(hepatic fibrosis/hepatic stellate cell activation) was observed as the
top pathway hit following exposure to both CNTSmall and CNTLarge.
This pathway was highly perturbed on day 3, with ligand-mediated
effects on nuclear transcription across the entire pathway (Supplemen-
tary Fig. 10). The cells and genes involved in this pathway are similar to
those involved in parenchymal injury to lungs, thus the induction of this
pathway shows that MWCNT exposure may initiate a fibrotic response.
Fibrosis induction is a highly multifactorial process and fibrosis-
associated genes were grouped under several GO biological processes,
including cellular growth and proliferation, response to wounding or
cellular function and maintenance. We identified several matrix
metallopeptidases (Mmp10, Mmp11, Mmp12, Mmp13, Mmp14, Mmp15,
Mmp19,Mmp3,Mmp8,Mmp9) and tissue inhibitor of metalloproteinase
(Timp1, Timp2, Timp3, Timp4), important for fibrogenesis and tissue
remodeling, that were differentially regulated after exposure to both
MWCNTs, primarily on post-exposure day 3. Also at the same time
point, several genes involved in TGFβ signaling, which has been linked
with the development of fibrosis, were differentially regulated follow-
ing exposure to both MWCNTs (Areg, Tgfbr2, Tgfbr3, Smad1, Smad6,
Smad9). However, Tgfb1 and Tgfb3 were regulated only after CNTLarge
exposure. On post-exposure day 28, expression of many of the
fibrosis-related genes had returned to baseline levels. However, an
upstream analysis of the differentially regulated genes at this time
point revealed that many of the genes affected by CNTLarge exposure
(56 genes)were regulated by TGFB1. In comparison, only 14 TGFB1 reg-
ulated geneswere identified following CNTSmall exposure. This indicates
activation of fibrotic processes 28 days after exposure, butwith an effect
that was most prominent following CNTLarge exposure. Also, by using a
list of genes linked to fibrosis described by Snyder-Talkington et al.
(2013) and a by conducting a literature search, we identified 14
fibrosis-associated genes uniquely expressed on post-exposure day 28
following high dose CNTLarge exposure; Arg1 (6.98-fold), Igf1 (5.02-
fold), Lgals3 (3.13-fold), Mmp12 (6.69-fold), Mmp13 (2.39-fold), Pde3a
(−1.95-fold), Ptgir (3.33-fold), Smurf2 (−1.45-fold), Tnfrsf1b (1.77-
fold), Vegfa (−1.66-fold), Eng (−1.61-fold), Jun (1.87-fold), Smad6
(−2.17-fold) and Spp1 (6.41-fold). This unique expression pattern
could indicate a chronic response related to the physicochemical prop-
erties of CNTLarge. This was emphasized in the upstream analysis, which
revealed that exposure to CNTLarge, but not CNTSmall, induced differential
expression of genes associated with bleomycin exposure, which is a
strong inducer of pulmonary fibrosis (Supplementary Fig. 11A). Similar-
ly, exposure to CNTLarge, but not CNTSmall, resulted in differential expres-
sion of genes associated with exposure to chrysotile asbestos, also a
known inducer of fibrosis (Supplementary Fig. 11B).

qRT-PCR analysis

Eight genes belonging to immune response, oxidative stress or fibro-
sis were selected for validation by qRT-PCR (Saa3, Il1α, Il6, Cxcl2, Ccl2,
Hmox1, Mmp9 and Sod2). Validation was conducted at all doses and
timepoints. The qRT-PCR results correlatedwellwith themicroarray re-
sults (Supplementary Table 5). A strong significant linear regression
was found between qRT-PCR andmicroarray data (P b 0.0001) (Supple-
mentary Fig. 12).

Histological examination of lungs

Onpost-exposure day 1,MWCNTswere present in the alveolar ducts
and alveoli, and single macrophages were observed in the lung tissue of
mice exposed to a high dose of both types of MWCNT (Fig. 6). Addition-
ally, in the group exposed to CNTLarge perivascular neutrophilic infiltra-
tion and slight desquamation of bronchiolar epitheliumwere observed.
Congestionwas seen in the controls andMWCNT exposed groups and it
was attributed to insufficient exsanguination of the carcasses.

On day 28 in the vehicle controls, minimal perivascular
mononuclear-neutrophilic infiltration, fibroblasts and fibrocytes
surrounding blood vessels and desquamation of bronchiolar epithelium
were observed. The high-dose CNTSmall group showed interstitial pneu-
monia, characterized by lymphoid cell infiltration of both interstitium
and alveolar lumina, small granulomas connected to alveolar walls or
granulomatous alveolitis, and alveolar septal thickening due to type II
pneumocyte hypertrophy and hyperplasia. Inflammatory cells and
both intracellular and extracellular MWCNTs were observed in the
alveoli. In the group exposed to the high-dose CNTLarge advanced inter-
stitial pneumoniawas observed, characterized by granulomas or granu-
lomatous alveolitis, fibrosis and alveolar septal lymphoid infiltration.
Fibrosis was observed following exposure to both types of MWCNT,
but it was more severe in the high-dose CNTLarge group compared to
the high-dose CNTSmall group (Figs. 6.J–L).

DNA damage

DNA strand breaks were evaluated through the comet assay in lungs
from mice intratracheally exposed to CNTSmall or CNTLarge for all doses
and on all time points (Fig. 7). A clear difference between CNTSmall and
CNTLarge exposure was observed, as instillation of CNTSmall mainly
affected the level of DNA strand breaks at the middle and high dose
on post-exposure day 3 (P b 0.001), whereas instillation of CNTLarge
affected all doses at post-exposure day 1 only (P b 0.01). We note that
a single sample in the 162 μg dose group sampled 3 days after exposure
to CNTSmall contained high levels of DNA damage, possibly driving the
statistically significant difference between this group and the control
group. However, careful examination of the sample revealed no signs
of the apoptotic cells that were observed in samples subjected to incor-
rect thawing (Jackson et al., 2013). Thus, the high level of DNA damage
was considered biological variance.

Free radical production

Acellular free radical production was assessed using a 2′,7′-
dichlorofluorescein diacetate (DCFH-DA) assay, which measures



Fig. 6. Lungmorphology. Representative HE or trichrome stained lung tissue sections frommice exposed to 0 or 162 μg/animal of CNTSmall or CNTLarge. (A)–(C) 1 day after instillation (a.i.)
and (D)–(L) 28 days a.i. (A)–(I): HE staining; (J)–(L): trichrome staining. (A) Vehicle control: Normal structure, terminal bronchiole lumen (black arrow) bifurcates into two alveolar ducts
(red arrows), congestion. Scale bar: 100 μm. (B) CNTSmall group: Extracellular CNT in centriacinar region (red arrows) and single macrophages. Scale bar: 100 μm. (C) CNTLarge group:
MWCNTs in terminal bronchiole (green arrow) and in alveoli (red arrows), perivascular neutrophilic infiltration (black arrow) and slight desquamation of bronchiolar epithelium.
Scale bar: 50 μm. (D) Vehicle control:Minimal perivascularmononuclear–neutrophilic infiltration (black arrows), and fibroblasts and fibrocytes surrounding blood vessels, desquamation
of bronchiolar epithelium into the lumen of bronchiole. Scale bar: 100 μm. (E) CNTSmall group: Perivascular mononuclear cell infiltration (green arrow), interstitial pneumoniamanifested
as alveolar septal thickening due to type II pneumocyte hypertrophy and hyperplasia (red arrows), intra-alveolar lymphoid cell infiltration (black arrows), and aggregations of macro-
phages. Scale bar: 100 μm. (F) CNTSmall group: Interstitial and catarrhal pneumonia. Alveolar septal thickening (red arrows) due to fibroblasts and type II pneumocyte hypertrophy. Hy-
perplasia, intra-alveolar lymphoid cell infiltration andpresence of theMWCNTs (black arrows); small granuloma in alveolar lumen. Scale bar: 50 μm. (G) CNTLarge group: Granuloma (black
arrow) containing two aggregates ofmacrophages surroundingmasses of theMWCNTs (red arrows) located at bifurcation of the terminal bronchiole into the twoalveolar ducts. Scale bar:
100 μm. (H) CNTLarge group: Advanced interstitial and catarrhal pneumonia. Alveolar septal lymphoid cell infiltration (green arrow), alveolitis (red arrows) and prominent fibrosis (in-
crease in observable connective tissue) (black arrow). Scale bar: 100 μm. (I) CNTLarge group: Interstitial pneumonia with fibrosis (green arrow), granuloma containing macrophages
and neutrophils, and the MWCNTs located at bifurcation of the terminal bronchiole into the alveolar ducts (black arrow), attenuation of epithelium of terminal bronchiole (red arrow),
desquamated bronchiolar epithelium in the lumen of bronchiole. Scale bar: 100 μm. (J) Vehicle control: small, normal amount of collagen in perivascular (red arrow) and peribronchial
(black arrow) regions (blue color). Scale bar: 50 μm. (K) CNTSmall group: thickening of alveolar septa due to type II pneumocyte hypertrophy and hyperplasia, mild fibrosis within a small
granuloma (red arrow) and in the alveolar septa (green arrows), andMWCNTs in alveolar lumen (black arrows). Scale bar: 50 μm. (L) CNTLarge group: interstitial pneumoniawith alveolar
septal fibrosis (red arrows), alveolitis, and intra-alveolar deposition of the MWCNTs (black arrows) Scale bar: 50 μm.
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the DCFH oxidation from the MWCNT (Supplementary Fig. 13). Be-
sides a slight increase in DCF observed at the highest concentration
(135 μg/ml), CNTLarge did not induce free radical production. In con-
trast, a strong increase in DCF was observed even at the lowest con-
centration (1.4 μg/ml) for CNTSmall. A dose response was observed
until dose 11.25 μg/ml, after which DCFH oxidation decreased
with increasing dose. This decline is likely due to a quenching of
the fluorescence by the MWCNT, as observed and described earlier
for SWCNTs (Jacobsen et al., 2008).

Discussion

The physicochemical properties of MWCNTs, including the high
aspect ratio, metal contamination, and straightness are considered im-
portant determinants of their toxicity. In this study, we investigated
global changes in mRNA expression in lung tissue of female C57BL/6
mice 1, 3 or 28 days after intratracheal exposure to different doses of
either CNTSmall or CNTLarge. Eight genes of interestwere verified through
qRT-PCR. Gene expression changes were interpreted in the context of
other toxicological phenotypes that were measured in the same exper-
imental setup, including inflammatory response, histological changes,
DNA strand breaks and oxidative stress capacity. The physicochemical
analyses of CNTSmall or CNTLarge revealed that the two MWCNTs differ
in length, thickness, purity, surface area and level of agglomeration
(Table 1). Despite these major differences in physical properties, the
twoMWCNTs induced remarkably similar changes inmolecular pheno-
types and gene expression, especially at post-exposure day 3. Both
CNTSmall and CNTLarge exposure induced a strong increase in expression
of genes involved in the inflammatory and acute phase response, which
was sustained at post-exposure day 28 for both nanotube types. This

Image of Fig. 6


Fig. 7. %Tail DNA in C57BL/6 mouse lung following exposure to CNTSmall or CNTLarge. Each mouse in the dose group is represented. Under each time point, the dose groups are portrayed
from left to right: 18 μg, 54 μg and 162 μg. Horizontal lines denote the means. *Statistically significantly different from vehicle instilled mice, P b 0.05. **Statistically significantly different
from vehicle instilled mice, P b 0.01. ***Statistically significantly different from vehicle instilled mice, P b 0.001.
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response is in concordancewith the observed changes in BAL cell influx
and lung morphology. Both CNTSmall and CNTLarge exposure resulted in
the development of interstitial pneumonia on post-exposure day 28,
however it was more sever with CNTLarge. The strong inflammatory
and acute phase responses are not unique to MWCNT exposure. Similar
responses have been observed following exposure to nano-titanium di-
oxide particles (nano-TiO2) and nano-carbon black (nano-CB) particles
via instillation or inhalation using experimental designs similar to that
used in the present study (Bourdon et al., 2012a; Halappanavar et al.,
2011; Husain et al., 2013; Jackson et al., 2011b). However, the number
of differentially expressed genes was an order of magnitude greater
following exposure to the two MWCNTs than following exposure to
nano-TiO2 and nano-CB, indicating stronger potency ofMWCNT. The in-
duction of an inflammatory response influenced several GO biological
processes and IPA functions, e.g. 'cellular movement'. Many annotations
under this categorywere associatedwith themovement of inflammato-
ry cells, e.g. the annotations “cell movement of leukocytes” or “mi-
gration of phagocytes” and were perturbed by both MWCNTs; we
speculate that small differences in the toxicological response could be
masked by the strong inflammatory response. Other effects caused by
CNTSmall and CNTLarge exposure included perturbation of lipid/cholester-
ol homeostasis, cell motility and cell cycle processes. However, notable
differences were found that provide insight into differences in the po-
tencies of these MWCNTs on pathological outcomes, namely a possible
late-onset fibrotic response.

It has been documented that excessive collagen production and
deposition of extra cellular matrix proteins during a persistent inflam-
matory response leading to lung injury (as reflected in BAL cell type
composition, lung morphology and microarray analysis) may lead
to development of fibrosis (Branton and Kopp, 1999; Strieter and
Mehrad, 2009). Fibrosis has been an observed endpoint in several
MWCNT studies (Aiso et al., 2010; Mercer et al., 2011; Muller et al.,
2005; Porter et al., 2010; Ryman-Rasmussen et al., 2009; Wang et al.,
2013). Snyder-Talkington et al. (2013) recently reported gene expres-
sion changes in male C57BL/6 mice exposed via pharyngeal aspiration
to 10, 20, 40 or 80 μg of MWCNT Mitsui-7 and sampled 1, 7, 28 or
56 days post-exposure. Snyder-Talkington et al. found that Mitsui-7
exposure was related functionally to either fibrosis or inflammation
and produced 2 gene lists based on this. A direct comparison of the 69
genes found to be related tofibrosis by Snyder-Talkington et al.with dif-
ferentially expressed genes following exposure to either CNTSmall or
CNTLarge in the present study revealed a high level of concordance,
both to the results of Snyder-Talkington et al., but also between CNTSmall

or CNTLarge exposed groups. However, it was found almost exclusively at
the early time points (days 1 and 3) (Supplementary Table 6). A similar
pattern emerged from our IPA analysis. Genes associated with the func-
tion ‘cellular growth and proliferation’ were perturbed 3 days after
exposure to CNTSmall and CNTLarge (Fig. 5) with annotations such as
“proliferation offibroblast cell lines” and “proliferation of connective tis-
sue”. Although none of these effects were observed on post-exposure
day 28, we observed subtle but important differences on day 28 follow-
ing exposure to CNTLarge. A total of 10 genes from the list of genes from
Snyder-Talkington et al. were differentially expressed at the high dose:
Arg1 (6.98-fold), Igf1 (5.02-fold), Lgals3 (3.13-fold),Mmp12 (6.69-fold),
Mmp13 (2.39-fold), Pde3a (−1.95-fold), Ptgir (3.33-fold), Smurf2
(−1.45-fold), Tnfrsf1b (1.77-fold) and Vegfa (−1.66-fold) (Supplemen-
tary Table 6), whereas only one gene was differentially expressed
following CNTSmall exposure: Vegfa (middle dose,−1.53-fold). A litera-
ture search for genes reported to be associated with fibrosis in general
identified an additional 4 genes that were differentially expressed
following CNTLarge exposure only on post-exposure day 28: Eng
(−1.61-fold), Jun (1.87-fold), Smad6 (−2.17-fold) and Spp1 (6.41-
fold). The connection between the 14 identified fibrosis-associated
genes is depicted in a network analysis (Supplementary Fig. 14). The
most differentially expressed gene among the 14 identified
fibrosis-associated genes was Spp1, which codes for the osteopontin
protein. Osteopontin has been suggested to be a marker for
bleomycin-induced fibrosis in mice (Dave and Kaminski, 2005). It
is an extracellular adhesion protein that is processed by extracellular
proteases and has been associated with metastasis and mesothelio-
ma carcinogenesis (Pass et al., 2005). Circulating osteopontin has
also been shown to be predictive for the diagnosis of mesothelioma
in humans (Pantazopoulos et al., 2013) and other asbestos-related
diseases (Rodriguez Portal, 2012). It remains to be demonstrated
whether osteopontin expression may be used to identify more
harmful high aspect ratio nanomaterials.

The CNTLarge-induced late-onset of fibrosis was supported by the
upstream analyses. TGFB1 was identified as the upstream regulator of
several differentially expressed genes following CNTLarge exposure.
This was to a lesser degree observed following CNTSmall exposure.
Transforming growth factor β has been proposed as a key mediator in
fibrosis through the SMAD signaling pathway (Sato et al., 2003;
Flanders et al., 2002; Moeller et al., 2006). TGFB1 is involved in both
fibroblast-to-myofibroblast conversion and epithelial–mesenchymal
transition (EMT), both resulting in increased levels of myofibroblasts
and subsequently increased collagen deposition (Wang et al., 2014;
Willis and Borok, 2007; Willis et al., 2005; Kasai et al., 2005; Leask and
Abraham, 2004). Several studies withMWCNT discussed an association
between TGF-β and fibrotic lesions in the lungs (Chen et al., 2014;
Ronzani et al., 2012; Wang et al., 2013, 2011b). Additionally, the up-
stream analyses also associated CNTLarge exposure with both bleomycin
and chrysotile asbestos exposure. Bleomycin is a standard model for
studying fibrosis (Peng et al., 2013; Moeller et al., 2006, 2008), and
therefore the convergence of genes affected by both CNTLarge and

Image of Fig. 7
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bleomycin suggests commonmolecular events drivingfibrosis. Thiswas
not observed for CNTSmall. This is in concordance with the histological
analysis. Although fibrosis was observed following exposure to both
MWCNTs, it was more severe with CNTLarge. This association is also
supported by the observation that only CNTLarge exposure induced
differential expression of genes that are also differentially expressed
following chrysotile asbestos exposure. CNTSmall and CNTLarge differ in
many physicochemical parameters, including length and straightness.
Studies have shown that the structure is highly important for MWCNT
toxicity. For example, after exposing male SH rats to long and short
MWCNT of similar width by intratracheal instillation Wang et al.
(2013) observed that the long, but not the short,MWCNT inducedfibro-
sis, probably through activation of TGF-β/Smad2/collagen III signal
transduction. Porter et al. (2010) and Mercer et al. (2011) observed
persistent fibrosis up to 56 days post-exposure in male C57BL/6 J mice
exposed via pharyngeal aspiration to the long, thick MWCNT Mitsui-7.
Comparing these studies to the result of the present study, we hypoth-
esize that up-regulation of fibrosis related gene expression observed
following CNTLarge exposure only, could be due to the structural differ-
ences between CNTLarge and CNTSmall. However, it should be noted
that some studies observe no differences in the fibrotic potential
between CNTs of different lengths (Muller et al., 2005; Ravichandran
et al., 2011).

Snyder-Talkington et al. (2013) included an additional long-term
timepoint (56 days) not analyzed in the present study. An order ofmag-
nitude higher number of differentially regulated geneswere observed at
this time point compared to day 28. This indicates effects of MWCNT
Mitsui-7 exposure apparent only at time points later than day 28. We
did not assess changes after 28 days, but given the physicochemical
similarities between Mitsui-7 and CNTLarge, it is likely that CNTLarge
also causes effects beyond 28 days. This emphasizes the need for long
term studies. Although there is a general focus on length-dependent
fibrotic effects, other factors such as purity, surface modifications and
entanglement of the CNTs may also affect the fibrotic potential. Mea-
surements of collagen deposition at later post-exposure time points
are needed in order to confirm the development of fibrosis.

Following exposure to CNTSmall and CNTLarge, we noticed a large
number of gene expression changes for serine proteinase inhibitors
(serpins) (Supplementary Table 7), a superfamily of proteins where
several members first were characterized as acute phase plasma prote-
ase inhibitors (Dickson and Alper, 1974). Serpins are now known to
have functions in a wide range of tissues including the lungs
(Silverman et al., 2001; Stein and Carrell, 1995). The greatest fold
change was observed in the expression of the Serpina3 gene, encoding
α-1-antichymotrypsin. In the lung, this protein is important for the
regulation of proteases released by leukocytes during an inflammatory
response (Horvath et al., 2005; Travis et al., 1978). Neutrophil influx
was significantly elevated at all doses and time points after exposure
to either sized MWCNT, and the large up-regulation in expression of
Serpina3s emphasizes a possible protective role of the protein against
damage to the respiratory tract caused by proteolytic enzymes after
MWCNT exposure. The expression of two Serpina1swas also significant-
ly increased after exposure CNTLarge, but not after exposure to CNTSmall.
Deficiency ofα-1-antitrypsin, encoded by Serpina1s, renders the organ-
ism vulnerable to breakdown by neutrophil elastases and the deficiency
has been correlated to chronic obstructive pulmonary disease (COPD)
(Chappell et al., 2006; Dahl et al., 2002; Kueppers et al., 1969). In addi-
tion, studies have shown a correlation between cigarette smoking and
increased levels of α-1-antitrypsin in the lungs (Linja-Aho et al., 2013;
Olsen et al., 1975). The observed differential expression of Serpina1s in
the present study may indicate that CNTLarge exposure could be a risk
factor for COPD in a similar fashion to cigarette smoke. Long-term
studies, preferably inhalation studies, are needed in order to confirm
or refute this hypothesis.

The expression profiles following exposure to CNTSmall and CNTLarge
were highly similar at post-exposure day 1. We recently published a
toxicogenomic analysis of effects of in vivo and in vitro exposures to
the MWCNT Mitsui-7 (Poulsen et al., 2013). These results enable the
comparison between CNTSmall, CNTLarge andMitsui-7. The in vivo exper-
imental design in Poulsen et al. (2013)was identical to the design in the
present study, although only one time point, day 1, was investigated,
but animal exposures, experimentation and analysis of DNAmicroarray
results were all performed separately from the present study.When ex-
amining the general expression profiles across the 3 different MWCNTs
at post-exposure day 1 (fold change ±1.5, FDR corrected P b 0.05), we
noted more similar expression patterns for CNTSmall and CNTLarge expo-
sures than forMitsui-7 and CNTLarge exposures (Supplementary Fig. 15).
This trend was consistent for enriched IPA functions (Supplementary
Fig. 16). DNA microarrays are powerful tools for understanding the
global transcriptome, but due to the high number of comparisons
made, some false-positive findings may occur. With that in mind, we
narrowed our analysis to genes with greater changes in expression
(fold change ± 3.0, FDR corrected P b 0.05). Overall, there was a high
degree of concordance among the expression profiles following expo-
sure to these different MWCNTs, especially at medium and high doses
(Fig. 8). Genes whose transcription was similarly affected primarily
belonged to inflammation and acute phase responses, as expected at
this early time point. However, no clear differences between the gene
expression profiles were observed. This highlights the reproducibility
of the study design and of the DNAmicroarray experiment and analysis.

Differences in the expression of genes involved in the IPA function
‘free radical scavenging’were observed between CNTLarge, and CNTSmall.
Specifically, exposure to CNTLarge, but not to CNTSmall, resulted in differ-
ential expression of genes belonging to this function as early as post-
exposure day 1 (Supplementary Fig. 8). The identified annotations
under this category were "production of reactive oxygen species", "me-
tabolism of reactive oxygen species" and "synthesis of reactive oxygen
species", indicating the rapid generation of ROS in the lungs. We have
previously shown that nano-CB produces ROS in vitro, and induces
DNA strand breaks in the comet analysis in vivo and in vitro (Jacobsen
et al., 2007, 2008, 2011). The mutation spectrum of nano-CB-induced
mutations is consistent with generation by ROS. Therefore, there was
a strong indication that the increased levels of DNA strand breaks
observed in the comet assay were due to increased ROS production in
the lung. Increased DNA strand break levels were observed at post-
exposure day 1 after exposure to CNTLarge, but not to CNTSmall, thereby
mimicking the early onset seen in the regulation of the function 'free
radical scavenging'. CNTLarge does not contain many metal impurities
and does not produce acellular ROS in contrast to CNTSmall (Supplemen-
tary Fig. 13 and Table 1), and therefore its ROS generating potential is
likely to arise from its high aspect ratio inducing a biological ROS
response. Long MWCNTs have been proven difficult to phagocytize by
the alveolar macrophages, however the size range of CNTSmall and
CNTLarge is too short to induce frustrated phagocytosis (Donaldson
et al., 2010). Instead the increased level of ROS could be caused by dis-
ruption of phagosomes and lysosomes by CNTLarge exposure. This
could ultimately lead to cell damage and difficulty in clearing the
MWCNT from the lungs.

Conclusion

Analysis of pulmonary response to intratracheal exposure to
CNTSmall or CNTLarge, twoMWCNTs with very different physicochemical
properties, revealed remarkably similar effects on the transcriptome,
especially in the key processes inflammation and acute phase response.
The gene expression changes observed correlated with BAL fluid cell
type composition changes and lung histology changes. Both MWCNTs
induced a large number of gene expression changes at the early time
points (1 and 3 days), but also a lower, sustained response that was
still apparent 28 days post-exposure. However, notable differences
were found between the two MWCNTs in the expression of several
genes associated with fibrosis and induction of fibrosis on post-



Fig. 8.Venn diagram of differentially expressed genes after exposure to CNTSmall, CNTLarge orMitsui-7. P b 0.05 and fold change±3.0. Blue circle: CNTSmall exposure. Yellow circle: CNTLarge
exposure. Green circle: Mitsui-7 exposure. (A) Dose 18 μg, day 1. (B) Dose 54 μg, day 1. (C) Dose 162 μg, day 1.
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exposure day 28. Specifically, we identified a subset of 14 genes that
were differentially regulated after exposure to CNTLarge, but not to
CNTSmall, coinciding with a stronger fibrotic response to CNTLarge expo-
sure. Thus, these genes could be candidates for biomarkers of fibrosis-
related toxicity, and indicate a possible late-onset response that is spe-
cific to exposures to MWCNT with physicochemical compositions simi-
lar to CNTLarge.

Supplementary data to this article can be found online at http://dx.
doi.org/10.1016/j.taap.2014.12.011.
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