248 research outputs found

    Common Minimum Technical Standards and Protocols for Biobanks Dedicated to Cancer Research

    Get PDF
    Biological specimens collected, processed, and stored under optimal conditions increasingly provide a necessary foundation for cancer research. Information obtained from such samples opens opportunities to learn more about the causes, prevention, and treatment of the disease. International comparisons made possible by the study of sample collections from different parts of the world are also invaluable in the pursuit of the evidence base for cancer control. However, the above-mentioned opportunities are accompanied by many challenges and potential pitfalls. At times, pragmatic decisions have to be made in response to the constraints faced when conducting clinical or population-based studies. These constraints may be technical, may relate to infrastructure or finance, or may be ethical, legal, or social in nature. Being unaware of these types of risk to successful biobanking can place important scientific advances in jeopardy. In this context, it is a great pleasure to introduce this publication from the International Agency for Research on Cancer (IARC). The purpose of the text is to provide clear and practical advice on the common practices needed to create and maintain biobanks, recognizing that the circumstances faced by the curators of biobanks vary across the world. The international cooperation that went into formulating these Common Minimal Technical Standards provides confidence that the content is realistic, while at the same time maintaining the minimal standards needed in order for the biospecimens to be valid and to yield the reliable research data being sought. In providing this Foreword, I would like to place on record my thanks to all authors and reviewers who have contributed to this final product, as well as to all the contributors to Common Minimum Technical Standards and Protocols for Biological Resource Centres Dedicated to Cancer Research, known as the \u201cGreen Book\u201d, published by IARC in 2007. In publishing this book, my hope is for a balanced focus, not only on what goes into a biobank but also on what comes out. There is a risk that biobanks remain untouched or underexploited, a deposit that is rarely put to work for the common good. While this book aims to ensure that what goes into a biobank is of high quality and well managed, it has as its ultimate objective to drive the use of those same biospecimens in research. This will involve the analysis of biospecimens, but to maximize the benefits it will also require linkage to other well-documented epidemiological and clinical data sets. In this period of spiralling numbers of cancer cases and costs of cancer care, the failure to use stored samples to answer critical research questions is indefensible. In conclusion, I trust that readers will find this publication to be a support to successful biobanking and will find herein one important foundation for cancer research in the 21st century

    The mutant p53-driven secretome has oncogenic functions in pancreatic ductal adenocarcinoma cells

    Get PDF
    The cancer secretome is a rich repository of useful information for both cancer biology and clinical oncology. A better understanding of cancer secretome is particularly relevant for pancreatic ductal adenocarcinoma (PDAC), whose extremely high mortality rate is mainly due to early metastasis, resistance to conventional treatments, lack of recognizable symptoms, and assays for early detection. TP53 gene is a master transcriptional regulator controlling several key cellular pathways and it is mutated in ~75% of PDACs. We report the functional effect of the hot-spot p53 mutant isoforms R175H and R273H on cancer cell secretome, showing their influence on proliferation, chemoresistance, apoptosis, and autophagy, as well as cell migration and epithelial-mesenchymal transition. We compared the secretome of p53-null AsPC-1 PDAC cells after ectopic over-expression of R175H-mutp53 or R273H-mutp53 to identify the differentially secreted proteins by mutant p53. By using high-resolution SWATH-MS technology, we found a great number of differentially secreted proteins by the two p53 mutants, 15 of which are common to both mutants. Most of these secreted proteins are reported to promote cancer progression and epithelial-mesenchymal transition and might constitute a biomarker secreted signature that is driven by the hot-spot p53 mutants in PDAC

    Life in Data”—Outcome of a Multi-Disciplinary, Interactive Biobanking Conference Session on Sample Data

    Get PDF
    ©Sara Y. Nussbeck et al. 2016; Published by Mary Ann Liebert, Inc. This Open Access article is distributed under the terms of the Creative Commons Attribution Noncommercial License (http://creativecommons.org/licenses/by-nc/4.0/) which permits any noncommercial use, distribution, and reproduction in any medium, provided the original author(s) and the source are credited. The article attached is the publisher's pdf

    Inferring structural variant cancer cell fraction.

    Get PDF
    We present SVclone, a computational method for inferring the cancer cell fraction of structural variant (SV) breakpoints from whole-genome sequencing data. SVclone accurately determines the variant allele frequencies of both SV breakends, then simultaneously estimates the cancer cell fraction and SV copy number. We assess performance using in silico mixtures of real samples, at known proportions, created from two clonal metastases from the same patient. We find that SVclone's performance is comparable to single-nucleotide variant-based methods, despite having an order of magnitude fewer data points. As part of the Pan-Cancer Analysis of Whole Genomes (PCAWG) consortium, which aggregated whole-genome sequencing data from 2658 cancers across 38 tumour types, we use SVclone to reveal a subset of liver, ovarian and pancreatic cancers with subclonally enriched copy-number neutral rearrangements that show decreased overall survival. SVclone enables improved characterisation of SV intra-tumour heterogeneity

    Alternative lengthening of telomeres (ALT) influences survival in soft tissue sarcomas: a systematic review with meta-analysis

    Get PDF
    Background. Alternative lengthening of telomeres (ALT) is a telomerase-independent mechanism used by a broad range of neoplasms to maintain telomere length, permitting uncontrolled replication during their progression. ALT has been described in different types of sarcoma, but a comprehensive analysis of its clinical significance is still lacking. Therefore, we provide here the first meta-analysis on this topic. Methods. We searched SCOPUS and PubMed through July 2018 to identify all studies that investigated the prognostic role of ALT in sarcomas. We considered the risk of death (risk ratio, RR) calculated as the number of death vs. total participants during follow-up in ALT+ versus ALTpatients as the primary outcome. The secondary outcome was the hazard ratio (HR), adjusted for the maximum number of covariates available, using ALT- patients as reference. Results. Eight articles comprising a total of 551 patients with sarcomas (226 ALT+ and 325 ALT-) were selected. The ALT+ group showed a higher mitotic count and a higher tumor grade compared with the ALT- group (p<0.01). Furthermore, we demonstrate a strong impact of ALT on survival. In fact, ALT+ patients showed a statistically significant higher risk of death than ALTpatients, when also considering data from multivariate analyses (RR = 1.50; 95% CI: 1.15–1.96; p =0.003; HR = 2.02; 95% CI: 1.22–3.38; p = 0.007). Conclusions. Our results indicate that ALT is associated with an increased risk of death in patients with sarcoma. In these neoplasms, ALT should be taken into account for a precise prognostic stratification and design of potential therapeutic strategies

    Genetic and non-genetic risk factors for early-onset pancreatic cancer

    Get PDF
    Early-onset pancreatic cancer (EOPC) represents 5-10% of all pancreatic ductal adenocarcinoma (PDAC) cases, and the etiology of this form is poorly understood. It is not clear if established PDAC risk factors have the same relevance for younger patients. This study aims to identify genetic and non-genetic risk factors specific to EOPC.A genome-wide association study was performed, analysing 912 EOPC cases and 10 222 controls, divided into discovery and replication phases. Furthermore, the associations between a polygenic risk score (PRS), smoking, alcohol consumption, type 2 diabetes and PDAC risk were also assessed.Six novel SNPs were associated with EOPC risk in the discovery phase, but not in the replication phase. The PRS, smoking, and diabetes affected EOPC risk. The OR comparing current smokers to never-smokers was 2.92 (95% CI 1.69-5.04, P = 1.44 × 10-4). For diabetes, the corresponding OR was 14.95 (95% CI 3.41-65.50, P = 3.58 × 10-4).In conclusion, we did not identify novel genetic variants associated specifically with EOPC, and we found that established PDAC risk variants do not have a strong age-dependent effect. Furthermore, we add to the evidence pointing to the role of smoking and diabetes in EOPC

    Genetic alterations analysis in prognostic stratified groups identified TP53 and ARID1A as poor clinical performance markers in intrahepatic cholangiocarcinoma

    Get PDF
    The incidence and mortality rates of intrahepatic cholangiocarcinoma have been rising worldwide. Few patients present an early-stage disease that is amenable to curative surgery and after resection, high recurrence rates persist. To identify new independent marker related to aggressive behaviour, two prognostic groups of patient were selected and divided according to prognostic performance. All patients alive at 36 months were included in good prognostic performers, while all patients died due to disease within 36 months in poor prognostic performers. Using high-coverage target sequencing we analysed principal genetic alterations in two groups and compared results to clinical data. In the 33 cases included in poor prognosis group, TP53 was most mutated gene (p\u2009=\u20090.011) and exclusively present in these cases. Similarly, ARID1A was exclusive of this group (p\u2009=\u20090.024). TP53 and ARID1A are mutually exclusive in this study. Statistical analysis showed mutations in TP53 and ARID1A genes and amplification of MET gene as independent predictors of poor prognosis (TP53, p\u2009=\u20090.0031, ARID1A, p\u2009=\u20090.0007, MET, p\u2009=\u20090.0003 in Cox analysis). LOH in PTEN was also identified as marker of disease recurrence (p\u2009=\u20090.04) in univariate analysis. This work improves our understanding of aggressiveness related to this tumour type and has identified novel prognostic markers of clinical outcome

    The integrin αvÎČ6 drives pancreatic cancer through diverse mechanisms and represents an effective target for therapy

    Get PDF
    Pancreatic ductal adenocarcinoma (PDAC) has a five‐year survival rate of &lt;4% and desperately needs novel effective therapeutics. Integrin αvÎČ6 has been linked with poor prognosis in cancer but its potential as a target in PDAC remains unclear. We report that transcriptional expression analysis revealed high levels of ÎČ6 mRNA correlated strongly with significantly poorer survival (n=491 cases, p= 3.17x10‐8). In two separate cohorts we showed that over 80% of PDAC expressed αvÎČ6 protein and that paired metastases retained αvÎČ6 expression. In vitro, integrin αvÎČ6 promoted PDAC cell growth, survival, migration and invasion. Treatment of both αvÎČ6‐positive human PDAC xenografts and transgenic mice bearing αvÎČ6‐positive PDAC with the αvÎČ6 blocking antibody 264RAD, combined with gemcitabine, significantly reduced tumour growth (p&lt;0.0001) and increased survival (Log‐rank test, p&lt;0.05). Antibody therapy was associated with suppression of both tumour cell activity (suppression of pErk growth signals, increased apoptosis seen as activated Caspase 3) and suppression of the pro‐tumourigenic microenvironment (suppression of TGFÎČ signalling, fewer αSMA‐positive myofibroblasts, decreased blood vessel density). These data show that αvÎČ6 promotes PDAC growth through both tumour cell and tumour microenvironment mechanisms and represents a valuable target for PDAC therapy

    Prognostic Role of High-Grade Tumor Budding in Pancreatic Ductal Adenocarcinoma: A Systematic Review and Meta-Analysis with a Focus on Epithelial to Mesenchymal Transition

    Get PDF
    This study aims at clarifying the prognostic role of high-grade tumor budding (TB) in pancreatic ductal adenocarcinoma (PDAC) with the first systematic review and meta-analysis on this topic. Furthermore, we analyzed with a systematic review the relationship between TB and a recently suggested TB-associated mechanism: the epithelial to mesenchymal transition (EMT). Analyzing a total of 613 patients, 251 of them (40.9%) with high grade-TB, we found an increased risk of all-cause mortality (RR, 1.46; 95% CI, 1.13–1.88, p = 0.004; HR, 2.65; 95% CI, 1.79–3.91; p < 0.0001) and of recurrence (RR, 1.61; 95% CI, 1.05–2.47, p = 0.03) for PDAC patients with high-grade TB. Moreover, we found that EMT is a central process in determining the presence of TB in PDAC. Thanks to this meta-analysis, we demonstrate the potential clinical significance of high-grade TB for prognostic stratification of PDAC. TB also shows a clear association with the process of EMT. Based on the results of the present study, TB should be conveyed in pathology reports and taken into account by future oncologic staging systems

    Ampullary cancers harbor ELF3 tumor suppressor gene mutations and exhibit frequent WNT dysregulation

    Get PDF
    The ampulla of Vater is a complex cellular environment from which adenocarcinomas arise to form a group of histopathologically heterogenous tumors. To evaluate the molecular features of these tumors, 98 ampullary adenocarcinomas were evaluated and compared to 44 distal bile duct and 18 duodenal adenocarcinomas. Genomic analyses revealed mutations in the WNT signaling pathway among half of the patients and in all three adenocarcinomas irrespective of their origin and histological morphology. These tumors were characterized by a high frequency of inactivating mutations of ELF3, a high rate of microsatellite instability, and common focal deletions and amplifications, suggesting common attributes in the molecular pathogenesis are at play in these tumors. The high frequency of WNT pathway activating mutation, coupled with small-molecule inhibitors of ÎČ-catenin in clinical trials, suggests future treatment decisions for these patients may be guided by genomic analysis
    • 

    corecore