9 research outputs found

    Development of a Standardized Scoring System to Assess a Murine Model of Clostridium difficile Colitis

    No full text
    Background: Clostridium difficile infection is the most common cause of antimicrobial-associated diarrhea. Our aim was to introduce a novel and efficient clinical sickness score (CSS), and to define a detailed histologic injury score (HIS) in a murine model of C. difficile colitis. Methods: Mice received an antibiotic cocktail (kanamycin, gentamicin, colistin, metronidazole, and vancomycin) for 96 h. After 48 h, mice received an intraperitoneal injection of clindamycin, followed by oral C. difficile (1.5 × 107 CFU). Signs of sickness were scored using a novel CSS (range 0–12) with scores ≄6 consistent with C. difficile colitis. Intestinal tissue was analyzed utilizing an adapted HIS (range 0–9) with scores ≄4 consistent with C. difficile colitis. Stool was analyzed for C. difficile, and survival evaluated. Results: No control mice showed signs of sickness, whereas 23% of mice receiving antibiotics alone and 65% of mice exposed to antibiotics and subsequently C. difficile demonstrated signs of sickness (p = 0.0134). No control mice had histologic injury, whereas 8% of mice receiving antibiotics alone and 75% of mice exposed to antibiotics followed by C. difficile had evidence of histologic injury (p = 0.0001). Mice exposed to C. difficile lost more weight, although not significant (p = 0.070). Mice that received C. difficile had decreased survival compared to control mice and mice receiving antibiotics only (p = 0.03). Conclusions: We have developed a novel clinical scoring system, and detailed histological grading system, that enables the objective evaluation of a murine C. difficile colitis model. This model allows the study of this disease in a host that demonstrates clinical and histologic signs comparable to human C. difficile infection. This will allow for improved study of therapeutics for this disease in the future

    The DESI experiment part I: science, targeting, and survey design

    No full text
    DESI (Dark Energy Spectroscopic Instrument) is a Stage IV ground-based dark energy experiment that will study baryon acoustic oscillations (BAO) and the growth of structure through redshift-space distortions with a wide-area galaxy and quasar redshift survey. To trace the underlying dark matter distribution, spectroscopic targets will be selected in four classes from imaging data. We will measure luminous red galaxies up to z=1.0z=1.0. To probe the Universe out to even higher redshift, DESI will target bright [O II] emission line galaxies up to z=1.7z=1.7. Quasars will be targeted both as direct tracers of the underlying dark matter distribution and, at higher redshifts (2.1<z<3.5 2.1 < z < 3.5), for the Ly-α\alpha forest absorption features in their spectra, which will be used to trace the distribution of neutral hydrogen. When moonlight prevents efficient observations of the faint targets of the baseline survey, DESI will conduct a magnitude-limited Bright Galaxy Survey comprising approximately 10 million galaxies with a median z≈0.2z\approx 0.2. In total, more than 30 million galaxy and quasar redshifts will be obtained to measure the BAO feature and determine the matter power spectrum, including redshift space distortions

    The DESI Experiment Part II: Instrument Design

    No full text
    DESI (Dark Energy Spectropic Instrument) is a Stage IV ground-based dark energy experiment that will study baryon acoustic oscillations and the growth of structure through redshift-space distortions with a wide-area galaxy and quasar redshift survey. The DESI instrument is a robotically-actuated, fiber-fed spectrograph capable of taking up to 5,000 simultaneous spectra over a wavelength range from 360 nm to 980 nm. The fibers feed ten three-arm spectrographs with resolution R=λ/ΔλR= \lambda/\Delta\lambda between 2000 and 5500, depending on wavelength. The DESI instrument will be used to conduct a five-year survey designed to cover 14,000 deg2^2. This powerful instrument will be installed at prime focus on the 4-m Mayall telescope in Kitt Peak, Arizona, along with a new optical corrector, which will provide a three-degree diameter field of view. The DESI collaboration will also deliver a spectroscopic pipeline and data management system to reduce and archive all data for eventual public use

    A global experiment on motivating social distancing during the COVID-19 pandemic

    Get PDF
    Finding communication strategies that effectively motivate social distancing continues to be a global public health priority during the COVID-19 pandemic. This cross-country, preregistered experiment (n = 25,718 from 89 countries) tested hypotheses concerning generalizable positive and negative outcomes of social distancing messages that promoted personal agency and reflective choices (i.e., an autonomy-supportive message) or were restrictive and shaming (i.e., a controlling message) compared with no message at all. Results partially supported experimental hypotheses in that the controlling message increased controlled motivation (a poorly internalized form of motivation relying on shame, guilt, and fear of social consequences) relative to no message. On the other hand, the autonomy-supportive message lowered feelings of defiance compared with the controlling message, but the controlling message did not differ from receiving no message at all. Unexpectedly, messages did not influence autonomous motivation (a highly internalized form of motivation relying on one’s core values) or behavioral intentions. Results supported hypothesized associations between people’s existing autonomous and controlled motivations and self-reported behavioral intentions to engage in social distancing. Controlled motivation was associated with more defiance and less long-term behavioral intention to engage in social distancing, whereas autonomous motivation was associated with less defiance and more short- and long-term intentions to social distance. Overall, this work highlights the potential harm of using shaming and pressuring language in public health communication, with implications for the current and future global health challenges
    corecore