57 research outputs found

    Phylogeography of amphi-boreal fish: tracing the history of the Pacific herring Clupea pallasii in North-East European seas

    Get PDF
    BackgroundThe relationships between North Atlantic and North Pacific faunas through times have been controlled by the variation of hydrographic circumstances in the intervening Arctic Ocean and Bering Strait. We address the history of trans-Arctic connections in a clade of amphi-boreal pelagic fishes using genealogical information from mitochondrial DNA sequence data. The Pacific and Atlantic herrings (Clupea pallasii and C. harengus) have basically vicarious distributions in the two oceans since pre-Pleistocene times. However, remote populations of C. pallasii are also present in the border waters of the North-East Atlantic in Europe. These populations show considerable regional and life history differentiation and have been recognized in subspecies classification. The chronology of the inter-oceanic invasions and genetic basis of the phenotypic structuring however remain unclear.ResultsThe Atlantic and Pacific herrings both feature high mtDNA diversities (large long-term population sizes) in their native basins, but an ocean-wide homogeneity of C. harengus is contrasted by deep east-west Pacific subdivision within Pacific C. pallasii. The outpost populations of C. pallasii in NE Europe are identified as members of the western Pacific C. pallasii clade, with some retained inter-oceanic haplotype sharing. They have lost diversity in colonization bottlenecks, but have also thereafter accumulated abundant new variation. The data delineate three phylogeographic groups within the European C. pallasii: herring from the inner White Sea; herring from the Mezen and Chesha Bays; and a strongly bottlenecked peripheral population in Balsfjord of the Norwegian Sea.ConclusionsThe NE European outposts of C. pallasii are judged to be early post-glacial colonists from the NW Pacific. A strong regional substructure has evolved since that time, in contrast to the apparent broad-scale uniformity maintained by herrings in their native basins. The structure only partly matches the previous biological concepts based on seasonal breeding stocks or geographical subspecies designations. The trans-Arctic herring phylogeography is notably similar to those of the amphi-boreal mollusk taxa Macoma and Mytilus, suggesting similar histories of inter-oceanic connections. We also considered the time dependency of molecular rates, critical for interpreting timing of relatively recent biogeographical events, by comparing the estimates from coding and non-coding mitochondrial regions of presumably different mutation dynamics

    Patterns of Cryptic Diversity and Phylogeography in Four Freshwater Copepod Crustaceans in European Lakes

    Get PDF
    Comparative phylogeography has become a powerful approach in exploring hidden or cryptic diversity within widespread species and understanding how historical and biogeographical factors shape the modern patterns of their distribution. Most comparative phylogeographic studies so far focus on terrestrial and vertebrate taxa, while aquatic invertebrates (and especially freshwater invertebrates) remain unstudied. In this article, we explore and compare the patterns of molecular diversity and phylogeographic structure of four widespread freshwater copepod crustaceans in European water bodies: the harpacticoids Attheyella crassa, Canthocamptus staphylinus and Nitokra hibernica, and the cyclopoid Eucyclops serrulatus, using sequence data from mtDNA COI and nuclear ITS/18S rRNA genes. The three taxa A. crassa, C. staphylinus and E. serrulatus each consist of deeply diverged clusters and are deemed to represent complexes of species with largely (but not completely) non-overlapping distributions, while in N. hibernica only little differentiation was found, which may however reflect the geographically more restricted sampling. However, the geographical patterns of subdivision differ. The divisions in A. crassa and E. serrulatus follow an east–west pattern in Northern Europe whereas that in C. staphylinus has more of a north–south pattern, with a distinct Fennoscandian clade. The deep mitochondrial splits among populations of A. crassa, C. staphylinus and E. serrulatus (model-corrected distances 26–36%) suggest that divergence of the lineages predate the Pleistocene glaciations. This study provides an insight into cryptic diversity and biogeographic distribution of freshwater copepods

    Patterns of Cryptic Diversity and Phylogeography in Four Freshwater Copepod Crustaceans in European Lakes

    Get PDF
    Comparative phylogeography has become a powerful approach in exploring hidden or cryptic diversity within widespread species and understanding how historical and biogeographical factors shape the modern patterns of their distribution. Most comparative phylogeographic studies so far focus on terrestrial and vertebrate taxa, while aquatic invertebrates (and especially freshwater invertebrates) remain unstudied. In this article, we explore and compare the patterns of molecular diversity and phylogeographic structure of four widespread freshwater copepod crustaceans in European water bodies: the harpacticoids Attheyella crassa, Canthocamptus staphylinus and Nitokra hibernica, and the cyclopoid Eucyclops serrulatus, using sequence data from mtDNA COI and nuclear ITS/18S rRNA genes. The three taxa A. crassa, C. staphylinus and E. serrulatus each consist of deeply diverged clusters and are deemed to represent complexes of species with largely (but not completely) non-overlapping distributions, while in N. hibernica only little differentiation was found, which may however reflect the geographically more restricted sampling. However, the geographical patterns of subdivision differ. The divisions in A. crassa and E. serrulatus follow an east–west pattern in Northern Europe whereas that in C. staphylinus has more of a north–south pattern, with a distinct Fennoscandian clade. The deep mitochondrial splits among populations of A. crassa, C. staphylinus and E. serrulatus (model-corrected distances 26–36%) suggest that divergence of the lineages predate the Pleistocene glaciations. This study provides an insight into cryptic diversity and biogeographic distribution of freshwater copepods

    Modelling habitat range and seasonality of a new, non-indigenous polychaete Laonome sp (Sabellida, Sabellidae) in Parnu Bay, the north-eastern Baltic Sea

    Get PDF
    An as-yet-undescribed, non-indigenous polychaete species was found at very high densities in the eastern part of the Baltic Sea in Estonia in 2012. The species belongs to the sabellid genus Laonome Malmgren, 1866, but it could not be assigned to any of the previously described species. To date, the species has established a stable population after surviving a notably cold winter (2012/2013). To study the local distribution and abundance of the species, a spatial grid with some stations repeated seasonally and interannually was sampled in a quantitative manner. Based of the survey data and available environmental data, the variables that contributed significantly to explaining variation in the abundance of the polychaete were determined using the Boosted Regression Trees modelling approach. Molecular barcodes to characterize the identity of the species were also established. The abundance of Laonome sp. exhibited strong seasonal variation, peaking between July and November. Besides seasonality, the quantity of decomposed microalgae in the sediment and wave exposure best explained the variation in abundance. Laonome sp. is now well-established in the Baltic Sea and locally reached high densities in low salinity areas. This non-indigenous polychaete may potentially modify sediment morphology and chemistry and disrupt the natural infaunal communities. Laonome sp. could displace or even completely eliminate some species currently present in the study area and beyond if it spreads; however, it could also facilitate currently-present species through the provision of alternative substrate and/or food. Given its persistence and high abundance in Parnu Bay, colonization of other low-salinity areas of the Baltic Sea can be expected.Peer reviewe

    Invertebrate collections policy of the Finnish Museum of Natural History

    Get PDF
    The collection policy of the Finnish Museum of Natural History Luomus is hierarchically structured. General principles and guidelines are defined in the General Collections Policy. Subordinate to it, the collection policies for the individual sub-collections implement and specify these guidelines and instructions, considering the special nature of each subcollection. The invertebrate collections policy in 2017 was the first sub-collection policy to observe this hierarchical structure, and was guided by the standards set by the European SYNTHESYS collections management self-assessment procedure. The invertebrate collections policy directs all activities related to the Luomus invertebrate collections (apart from DNA and tissue samples), which comprise the separately managed entomological collections (ca. 9 million specimens) and collections of other invertebrates (0.4 million). The policy defines the purpose of the collections, outlines the objectives and content of procedures and activities related to them, the division of responsibilities for the administration and care of the collections within the organisation, and the principles and practices for the acquisition, preservation, accessibility and use of the collections.Non peer reviewe

    Species identification based on a semi-diagnostic marker : Evaluation of a simple conchological test for distinguishing blue mussels Mytilus edulis L. and M. trossulus Gould

    Get PDF
    Cryptic and hybridizing species may lack diagnostic taxonomic characters leaving researchers with semi-diagnostic ones. Identification based on such characters is probabilistic, the probability of correct identification depending on the species composition in a mixed population. Here we test the possibilities of applying a semi-diagnostic conchological character for distinguishing two cryptic species of blue mussels, Mytilus edulis and M. trossulus. These ecologically, stratigraphically and economically important molluscs co-occur and hybridize in many areas of the North Atlantic and the neighboring Arctic. Any cues for distinguishing them in sympatry without genotyping would save much research effort. Recently these species have been shown to statistically differ in the White Sea, where a simple character of the shell was used to distinguish two mussel morphotypes. In this paper, we analyzed the associations between morphotypes and species-specific genotypes based on an abundant material from the waters of the Kola Peninsula (White Sea, Barents Sea) and a more limited material from Norway, the Baltic Sea, Scotland and the Gulf of Maine. The performance of the "morphotype test" for species identification was formally evaluated using approaches from evidence-based medicine. Interspecific differences in the morphotype frequencies were ubiquitous and unidirectional, but their scale varied geographically (from 75% in the White Sea to 15% in the Baltic Sea). In addition, salinity-related variation of this character within M. edulis was revealed in the Arctic Barents Sea. For every studied region, we established relationships between the proportions of the morphotypes in the populations as well as between the proportions of the morphotypes in samples and the probabilities of mussels of different morphotypes being M. trossulus and M. edulis. We provide recommendations for the application of the morphotype test to mussels from unstudied contact zones and note that they may apply equally well to other taxa identified by semi-diagnostic traits.Peer reviewe

    Herbarium collections policy of the Finnish Museum of Natural History

    Get PDF
    The herbarium collections are sub-collections of the Finnish Museum of Natural History Luomus that manages national natural history collections, as referred to in the Universities Act. The general collections policy defines the overall principles and guidelines concerning the collections practices. The sub-collections policies specify its guidelines and instructions, considering the special nature of the sub-collections. The policy for the botanical and mycological herbarium collections guides the activities related to all botanical, mycological and phycological collections in herbaria, hence excluding digital collections, DNA and tissue samples as well as living collections, which have separate policies. The herbarium collections policy defines and outlines the purpose of the collections as is to accrue and preserve natural specimens representing biodiversity for research and university-level teaching. The policy defines the objectives and content of related activities, the division of responsibilities for the administration and care of the collections within the organisation, and the general principles and practices for the acquisition, preservation, availability and use of the collections.Non peer reviewe

    General Collections Policy of the Finnish Museum of Natural History

    Get PDF
    As part of its quality management and goal-driven strategic development, the Finnish Museum of Natural History Luomus drafts policy documents to guide its operational sectors. The purpose of such policies is to define the content and procedures of the Museum’s activities. They answer the questions “what”, “why”, “who” and “for whom” about the activities they discuss, which is to say that they define and delimit the scope of the operational sector, provide the operations with a purpose and determine their content, describe the allocation of responsibilities in the sector under the Luomus organisation and identify the target groups. The policies provide general objectives and thus form the basis for target programmes and any action plans which in turn answer the question “How can we reach the designated goals?”. Policies are not tied to a schedule, unlike target programmes, even though they must be dynamic and updated periodically to better serve the organisation. The core activities at Luomus are: (1) maintenance of the scientific collections, (2) research and (3) expert services. The General Collections Policy sets guidelines for the maintenance of the scientific collections based on the mission of the University of Helsinki and LuomusNon peer reviewe

    Museum specimens of a landlocked pinniped reveal recent loss of genetic diversity and unexpected population connections

    Get PDF
    The Saimaa ringed seal (Pusa hispida saimensis) is endemic to Lake Saimaa in Finland. The subspecies is thought to have originated when parts of the ringed seal population of the Baltic region were trapped in lakes emerging due to postglacial bedrock rebound around 9000 years ago. During the 20th century, the population experienced a drastic human-induced bottleneck. Today encompassing a little over 400 seals with extremely low genetic diversity, it is classified as endangered. We sequenced sections of the mitochondrial control region from 60 up to 125-years-old museum specimens of the Saimaa ringed seal. The generated dataset was combined with publicly available sequences. We studied how genetic variation has changed through time in this subspecies and how it is phylogenetically related to other ringed seal populations from the Baltic Sea, Lake Ladoga, North America, Svalbard, and the White Sea. We observed temporal fluctuations in haplotype frequencies and loss of haplotypes accompanied by a recent reduction in female effective population size. In apparent contrast with the traditionally held view of the Baltic origin of the population, the Saimaa ringed seal mtDNA variation also shows affinities to North American ringed seals. Our results suggest that the Saimaa ringed seal has experienced recent genetic drift associated with small population size. The results further suggest that extant Baltic ringed seal is not representative of the ancestral population of the Saimaa ringed seal, which calls for re-evaluation of the deep history of this subspecies
    • 

    corecore