47 research outputs found

    High-Intensity Interval Training Decreases Resting Urinary Hypoxanthine Concentration in Young Active Men—A Metabolomic Approach

    Get PDF
    High-intensity interval training (HIIT) is known to improve performance and skeletal muscle energy metabolism. However, whether the body’s adaptation to an exhausting short-term HIIT is reflected in the resting human metabolome has not been examined so far. Therefore, a randomized controlled intervention study was performed to investigate the effect of a ten-day HIIT on the resting urinary metabolome of young active men. Fasting spot urine was collected before (−1 day) and after (+1 day; +4 days) the training intervention and 65 urinary metabolites were identified by liquid chromatography-mass spectrometry (LC-MS) and nuclear magnetic resonance (NMR) spectroscopy. Metabolite concentrations were normalized to urinary creatinine and subjected to univariate statistical analysis. One day after HIIT, no overall change in resting urinary metabolome, except a significant difference with decreasing means in urinary hypoxanthine concentration, was documented in the experimental group. As hypoxanthine is related to purine degradation, lower resting urinary hypoxanthine levels may indicate a training-induced adaptation in purine nucleotide metabolism

    Age-related Changes of Plasma Bile Acid Concentrations in Healthy Adults : Results from the Cross-Sectional KarMeN Study

    Get PDF
    Bile acids (BA) play an important role in lipid metabolism. They facilitate intestinal lipid absorption, and BA synthesis is the main catabolic pathway for cholesterol. The objective of this study was to investigate associations of age, sex, diet (fat intake) and parameters of lipid metabolism (triglycerides, LDL, HDL, body fat content) with fasting plasma BA concentration of healthy individuals. Fasting plasma samples from a cross-sectional study were used to determine the concentrations of 14 BA using an LC-MS stable isotope dilution assay. Triglycerides, LDL and HDL were analyzed by standard clinical chemistry methods and body fat content was measured with a DXA instrument. The dietary fat intake of the 24 h period prior to the sampling was assessed on the basis of a 24 h recall. Subsequent statistical data processing was done by means of a median regression model. Results revealed large inter-individual variations. Overall, higher median plasma concentrations of BA were observed in men than in women. Quantile regression showed significant interactions of selected BA with age and sex, affecting primarily chenodeoxycholic acid and its conjugates. No associations were found for LDL and the amount of fat intake (based on the percentage of energy intake from dietary fat as well as total fat intake). Additional associations regarding body fat content, HDL and triglycerides were found for some secondary BA plasma concentrations. We conclude that age and sex are associated with the fasting plasma concentrations. Those associations are significant and need to be considered in studies investigating the role of BA in the human metabolism

    Dynamic patterns of postprandial metabolic responses to three dietary challenges

    Get PDF
    Food intake triggers extensive changes in the blood metabolome. The kinetics of these changes depend on meal composition and on intrinsic, health-related characteristics of each individual, making the assessment of changes in the postprandial metabolome an opportunity to assess someone's metabolic status. To enable the usage of dietary challenges as diagnostic tools, profound knowledge about changes that occur in the postprandial period in healthy individuals is needed. In this study, we characterize the time-resolved changes in plasma levels of 634 metabolites in response to an oral glucose tolerance test (OGTT), an oral lipid tolerance test (OLTT), and a mixed meal (SLD) in healthy young males (n = 15). Metabolite levels for samples taken at different time points (20 per individual) during the challenges were available from targeted (132 metabolites) and non-targeted (502 metabolites) metabolomics. Almost half of the profiled metabolites (n = 308) showed a significant change in at least one challenge, thereof 111 metabolites responded exclusively to one particular challenge. Examples include azelate, which is linked to ω-oxidation and increased only in OLTT, and a fibrinogen cleavage peptide that has been linked to a higher risk of cardiovascular events in diabetes patients and increased only in OGTT, making its postprandial dynamics a potential target for risk management. A pool of 89 metabolites changed their plasma levels during all three challenges and represents the core postprandial response to food intake regardless of macronutrient composition. We used fuzzy c-means clustering to group these metabolites into eight clusters based on commonalities of their dynamic response patterns, with each cluster following one of four primary response patterns: (i) “decrease-increase” (valley-like) with fatty acids and acylcarnitines indicating the suppression of lipolysis, (ii) “increase-decrease” (mountain-like) including a cluster of conjugated bile acids and the glucose/insulin cluster, (iii) “steady decrease” with metabolites reflecting a carryover from meals prior to the study, and (iv) “mixed” decreasing after the glucose challenge and increasing otherwise. Despite the small number of subjects, the diversity of the challenges and the wealth of metabolomic data make this study an important step toward the characterization of postprandial responses and the identification of markers of metabolic processes regulated by food intake

    Untargeted NMR Spectroscopic Analysis of the Metabolic Variety of New Apple Cultivars

    Get PDF
    Metabolome analyses by NMR spectroscopy can be used in quality control by generating unique fingerprints of different species. Hundreds of components and their variation between different samples can be analyzed in a few minutes/hours with high accuracy and low cost of sample preparation. Here, apple peel and pulp extracts of a variety of apple cultivars were studied to assess their suitability to discriminate between the different varieties. The cultivars comprised mainly newly bred varieties or ones that were brought onto the market in recent years. Multivariate analyses of peel and pulp extracts were able to unambiguously identify all cultivars, with peel extracts showing a higher discriminative power. The latter was increased if the highly concentrated sugar metabolites were omitted from the analysis. Whereas sugar concentrations lay within a narrow range, polyphenols, discussed as potential health promoting substances, and acids varied remarkably between the cultivars

    Nutrimetabolomics: An Integrative Action for Metabolomic Analyses in Human Nutritional Studies

    Get PDF
    The life sciences are currently being transformed by an unprecedented wave of developments in molecular analysis, which include important advances in instrumental analysis as well as biocomputing. In light of the central role played by metabolism in nutrition, metabolomics is rapidly being established as a key analytical tool in human nutritional studies. Consequently, an increasing number of nutritionists integrate metabolomics into their study designs. Within this dynamic landscape, the potential of nutritional metabolomics (nutrimetabolomics) to be translated into a science, which can impact on health policies, still needs to be realized. A key element to reach this goal is the ability of the research community to join, to collectively make the best use of the potential offered by nutritional metabolomics. This article, therefore, provides a methodological description of nutritional metabolomics that reflects on the state‐of‐the‐art techniques used in the laboratories of the Food Biomarker Alliance (funded by the European Joint Programming Initiative "A Healthy Diet for a Healthy Life" (JPI HDHL)) as well as points of reflections to harmonize this field. It is not intended to be exhaustive but rather to present a pragmatic guidance on metabolomic methodologies, providing readers with useful "tips and tricks" along the analytical workflow

    An NMR-Based Approach to Identify Urinary Metabolites Associated with Acute Physical Exercise and Cardiorespiratory Fitness in Healthy Humans—Results of the KarMeN Study

    Get PDF
    Knowledge on metabolites distinguishing the metabolic response to acute physical exercise between fit and less fit individuals could clarify mechanisms and metabolic pathways contributing to the beneficial adaptations to exercise. By analyzing data from the cross-sectional KarMeN (Karlsruhe Metabolomics and Nutrition) study, we characterized the acute effects of a standardized exercise tolerance test on urinary metabolites of 255 healthy women and men. In a second step, we aimed to detect a urinary metabolite pattern associated with the cardiorespiratory fitness (CRF), which was determined by measuring the peak oxygen uptake (VO2peak) during incremental exercise. Spot urine samples were collected pre- and post-exercise and 47 urinary metabolites were identified by nuclear magnetic resonance (NMR) spectroscopy. While the univariate analysis of pre-to-post-exercise differences revealed significant alterations in 37 urinary metabolites, principal component analysis (PCA) did not show a clear separation of the pre- and post-exercise urine samples. Moreover, both bivariate correlation and multiple linear regression analyses revealed only weak relationships between the VO2peak and single urinary metabolites or urinary metabolic pattern, when adjusting for covariates like age, sex, menopausal status, and lean body mass (LBM). Taken as a whole, our results show that several urinary metabolites (e.g., lactate, pyruvate, alanine, and acetate) reflect acute exercise-induced alterations in the human metabolism. However, as neither pre- and post-exercise levels nor the fold changes of urinary metabolites substantially accounted for the variation of the covariate-adjusted VO2peak, our results furthermore indicate that the urinary metabolites identified in this study do not allow to draw conclusions on the individual’s physical fitness status. Studies investigating the relationship between the human metabolome and functional variables like the CRF should adjust for confounders like age, sex, menopausal status, and LBM
    corecore