95 research outputs found

    Assessing the Market for Poultry Litter in Georgia: Are Subsidies Needed to Protect Water Quality?

    Get PDF
    Concerns about nutrient loads into our waters have focused attention on poultry litter applications. Like many states with a large poultry industry, Georgia recently designed a subsidy program to facilitate the transportation of poultry litter out of vulnerable watersheds. This paper uses a transportation model to examine the necessity of a poultry litter subsidy to achieve water protection goals in Georgia. We also demonstrate the relationship between diesel and synthetic fertilizer prices and the value of poultry litter. Results suggest that a well functioning market would be able to remove excess litter from vulnerable watersheds in the absence of a subsidy.fertilizer, phosphorous, poultry litter, subsidy, transportation model, water quality, Environmental Economics and Policy, Marketing, Q12, Q13, Q25, Q53,

    Modeling Phosphorus Loading to Lake Allatoona: Implications for Water Quality Trading

    Get PDF
    Proceedings of the 2007 Georgia Water Resources Conference, March 27-29, 2007, Athens, Georgia.Lake Allatoona, a large reservoir north of Atlanta Georgia that drains an area of about 2870 km2, is threatened by excessive algal growth and scheduled for a phosphorus (P) TMDL. In this paper, we use the Soil Water Assessment Tool (SWAT) computer model to estimate the total P load to Lake Allatoona during the periods 1992-1996 and 2001-2004. We also use the model to estimate the contribution from different sources in the watershed. The total P load to Lake Allatoona increased by 20% between the two time periods. The contribution from point sources decreased from 30% to 13% of the total load due to permit restrictions on P for poultry processing plants. The largest nonpoint source of P was estimated to be forest land use in 1992-1996 accounting for 31% of the load and urban land use in 2001-2004 accounting for 50% of the load. Poultry/cattle land use accounted for 18% in 1992-1996 and 15% in 2001-2004. The implications for a program to trade P credits are: 1) point sources and poultry/cattle operations account for similar percentages of the current load, 2) urban development accounts for most of the current P load and should be brought into a trading program, 3) poultry processing plants that have not upgraded to better P removal technology might trade their current load to wastewater treatment facilities that accept their wastewater, 4) cattle in streams and row crops are not large sources according to our model, and 5) there is little net loss of P to streams during transport to Lake Allatoona so distance of a source from the lake may not be important in a trading scheme.Sponsored and Organized by: U.S. Geological Survey, Georgia Department of Natural Resources, Natural Resources Conservation Service, The University of Georgia, Georgia State University, Georgia Institute of TechnologyThis book was published by the Institute of Ecology, The University of Georgia, Athens, Georgia 30602-2202. The views and statements advanced in this publication are solely those of the authors and do not represent official views or policies of The University of Georgia, the U.S. Geological Survey, the Georgia Water Research Institute as authorized by the Water Resources Research Act of 1990 (P.L. 101-397) or the other conference sponsors

    Georgia's water conservation efforts: Cooperative Extension's banner effort

    Get PDF
    Proceedings of the 2009 Georgia Water Resources Conference, April 27, 28, and 29, 2009 Athens, Georgia.Georgia has been gripped by drought for much of 2007 and 2008. UGA Cooperative Extension selected water conservation as a statewide priority in 2007 and developed educational materials for programming through county extension efforts. The project included components dealing with outdoor water use in conjunction with the Georgia DNR's WaterSmart program, with indoor water use in conjunction with the College of Family and Consumer Sciences, and a youth component in conjunction with the Georgia 4-H program. This presentation will include an overview of the materials developed as well as a discussion of some of the outputs and evaluations that have been conducted.Sponsored by: Georgia Environmental Protection Division U.S. Geological Survey, Georgia Water Science Center U.S. Department of Agriculture, Natural Resources Conservation Service Georgia Institute of Technology, Georgia Water Resources Institute The University of Georgia, Water Resources FacultyThis book was published by Warnell School of Forestry and Natural Resources, The University of Georgia, Athens, Georgia 30602-2152. The views and statements advanced in this publication are solely those of the authors and do not represent official views or policies of The University of Georgia, the U.S. Geological Survey, the Georgia Water Research Institute as authorized by the Water Research Institutes Authorization Act of 1990 (P.L. 101-307) or the other conference sponsors

    Loss of residues 119 – 136, including the first β-strand of human prion protein, generates an aggregation-competent partially “open” form

    Get PDF
    In prion replication, the cellular form of prion protein (PrPC) must undergo a full conformational transition to its disease-associated fibrillar form. Transmembrane forms of PrP have been implicated in this structural conversion. The cooperative unfolding of a structural core in PrPC presents a substantial energy barrier to prion formation, with membrane insertion and detachment of parts of PrP presenting a plausible route to its reduction. Here, we examined the removal of residues 119 - 136 of PrP, a region which includes the first β-strand and a substantial portion of the conserved hydrophobic region of PrP, a region which associates with the ER membrane, on the structure, stability and self-association of the folded domain of PrPC. We see an "open" native-like conformer with increased solvent exposure which fibrilises more readily than the native state. These data suggest a stepwise folding transition, which is initiated by the conformational switch to this "open" form of PrPC

    Field cricket genome reveals the footprint of recent, abrupt adaptation in the wild.

    Get PDF
    Evolutionary adaptation is generally thought to occur through incremental mutational steps, but large mutational leaps can occur during its early stages. These are challenging to study in nature due to the difficulty of observing new genetic variants as they arise and spread, but characterizing their genomic dynamics is important for understanding factors favoring rapid adaptation. Here, we report genomic consequences of recent, adaptive song loss in a Hawaiian population of field crickets (Teleogryllus oceanicus). A discrete genetic variant, flatwing, appeared and spread approximately 15 years ago. Flatwing erases sound-producing veins on male wings. These silent flatwing males are protected from a lethal, eavesdropping parasitoid fly. We sequenced, assembled and annotated the cricket genome, produced a linkage map, and identified a flatwing quantitative trait locus covering a large region of the X chromosome. Gene expression profiling showed that flatwing is associated with extensive genome-wide effects on embryonic gene expression. We found that flatwing male crickets express feminized chemical pheromones. This male feminizing effect, on a different sexual signaling modality, is genetically associated with the flatwing genotype. Our findings suggest that the early stages of evolutionary adaptation to extreme pressures can be accompanied by greater genomic and phenotypic disruption than previously appreciated, and highlight how abrupt adaptation might involve suites of traits that arise through pleiotropy or genomic hitchhiking

    Climate change implications for tidal marshes and food web linkages to estuarine and coastal nekton

    Get PDF
    Climate change is altering naturally fluctuating environmental conditions in coastal and estuarine ecosystems across the globe. Departures from long-term averages and ranges of environmental variables are increasingly being observed as directional changes [e.g., rising sea levels, sea surface temperatures (SST)] and less predictable periodic cycles (e.g., Atlantic or Pacific decadal oscillations) and extremes (e.g., coastal flooding, marine heatwaves). Quantifying the short- and long-term impacts of climate change on tidal marsh seascape structure and function for nekton is a critical step toward fisheries conservation and management. The multiple stressor framework provides a promising approach for advancing integrative, cross-disciplinary research on tidal marshes and food web dynamics. It can be used to quantify climate change effects on and interactions between coastal oceans (e.g., SST, ocean currents, waves) and watersheds (e.g., precipitation, river flows), tidal marsh geomorphology (e.g., vegetation structure, elevation capital, sedimentation), and estuarine and coastal nekton (e.g., species distributions, life history adaptations, predator-prey dynamics). However, disentangling the cumulative impacts of multiple interacting stressors on tidal marshes, whether the effects are additive, synergistic, or antagonistic, and the time scales at which they occur, poses a significant research challenge. This perspective highlights the key physical and ecological processes affecting tidal marshes, with an emphasis on the trophic linkages between marsh production and estuarine and coastal nekton, recommended for consideration in future climate change studies. Such studies are urgently needed to understand climate change effects on tidal marshes now and into the future

    From Democratic Peace to Democratic Distinctiveness: A Critique of Democratic Exceptionalism in Peace and Conflict Studies

    Full text link

    Network Governance and the Making of Brazil's Foreign Policy Towards China in the 21st Century

    Full text link

    Runoff and Soil Loss as Affected by the Application of Manure

    Get PDF
    Manure has been used effectively to improve crop production and soil properties because it contains nutrients and organic matter. While it is generally accepted that the improved soil properties associated with manure application lead to changes in runoff and soil erosion, few studies have quantified these impacts. Water quality models used to assess watershed management and estimate total maximum daily load must accurately predict loading rates from fields where manure has been applied. This study was conducted to assemble and summarize information quantifying the effects of manure application on runoff and soil loss resulting from natural precipitation events, and to develop regression equations relating runoff and soil loss to annual manure application rates. For selected locations at which manure was added annually, runoff was reduced from 2 to 62%, and soil loss decreased from 15 to 65% compared to non-manured sites. Measured runoff and soil loss values were reduced substantially as manure application rates increased. Regression equations were developed relating runoff and soil loss to manure application for rates ranging from 11 to 45 Mg ha–1, and slope lengths varying from 21 to 24 m. The equations can be used in estimating environmental impacts or to account for manure applications in water quality modeling efforts
    corecore