498 research outputs found

    Primal-improv: Towards co-evolutionary musical improvisation

    Get PDF

    Gaussian Approximation Potentials: the accuracy of quantum mechanics, without the electrons

    Get PDF
    We introduce a class of interatomic potential models that can be automatically generated from data consisting of the energies and forces experienced by atoms, derived from quantum mechanical calculations. The resulting model does not have a fixed functional form and hence is capable of modeling complex potential energy landscapes. It is systematically improvable with more data. We apply the method to bulk carbon, silicon and germanium and test it by calculating properties of the crystals at high temperatures. Using the interatomic potential to generate the long molecular dynamics trajectories required for such calculations saves orders of magnitude in computational cost.Comment: v3-4: added new material and reference

    Numerical simulations of the decay of primordial magnetic turbulence

    Full text link
    We perform direct numerical simulations of forced and freely decaying 3D magnetohydrodynamic turbulence in order to model magnetic field evolution during cosmological phase transitions in the early Universe. Our approach assumes the existence of a magnetic field generated either by a process during inflation or shortly thereafter, or by bubble collisions during a phase transition. We show that the final configuration of the magnetic field depends on the initial conditions, while the velocity field is nearly independent of initial conditions.Comment: 10 pages, 6 figures, references added, PRD accepte

    Teleology and Realism in Leibniz's Philosophy of Science

    Get PDF
    This paper argues for an interpretation of Leibniz’s claim that physics requires both mechanical and teleological principles as a view regarding the interpretation of physical theories. Granting that Leibniz’s fundamental ontology remains non-physical, or mentalistic, it argues that teleological principles nevertheless ground a realist commitment about mechanical descriptions of phenomena. The empirical results of the new sciences, according to Leibniz, have genuine truth conditions: there is a fact of the matter about the regularities observed in experience. Taking this stance, however, requires bringing non-empirical reasons to bear upon mechanical causal claims. This paper first evaluates extant interpretations of Leibniz’s thesis that there are two realms in physics as describing parallel, self-sufficient sets of laws. It then examines Leibniz’s use of teleological principles to interpret scientific results in the context of his interventions in debates in seventeenth-century kinematic theory, and in the teaching of Copernicanism. Leibniz’s use of the principle of continuity and the principle of simplicity, for instance, reveal an underlying commitment to the truth-aptness, or approximate truth-aptness, of the new natural sciences. The paper concludes with a brief remark on the relation between metaphysics, theology, and physics in Leibniz

    Quantifying molecular oxygen isotope variations during a Heinrich stadial

    Get PDF
    International audienceδ 18 O of atmospheric oxygen (δ 18 O atm) undergoes millennial-scale variations during the last glacial period, and systematically increases during Heinrich stadials (HSs). Changes in δ 18 O atm combine variations in biospheric and water cycle processes. The identification of the main driver of the millennial variability in δ 18 O atm is thus not straightforward. Here, we quantify the response of δ 18 O atm to such millennial events using a freshwater hosing simulation performed under glacial boundary conditions. Our global approach takes into account the latest estimates of isotope frac-tionation factor for respiratory and photosynthetic processes and make use of atmospheric water isotope and vegetation changes. Our modeling approach allows to reproduce the main observed features of a HS in terms of climatic conditions , vegetation distribution and δ 18 O of precipitation. We use it to decipher the relative importance of the different processes behind the observed changes in δ 18 O atm. The results highlight the dominant role of hydrology on δ 18 O atm and confirm that δ 18 O atm can be seen as a global integrator of hydrological changes over vegetated areas

    E-Defense 2015 ten-story building: beam–column joint assessment according to different code-based design

    Get PDF
    Recent devastating earthquakes worldwide pointed out the importance of seismic detailing and their influence on the observed damage and subsequent repairability of reinforced concrete buildings. Several studies and post-earthquake observations remarked the role of beam–column joints (BCJs) on the global building response and the effectiveness of transverse reinforcement in increasing the joint shear strength and the ultimate deformation. Although number of experimental and theoretical studies focused on the seismic response of BCJs, their mechanical behaviour is still a discussed topic. This resulted in number of design approaches available in worldwide code or standards that lead to different quantity of joint stirrups. This study focuses on the response of BCJs of a 10-story prototype building designed according to Japanese standards and tested in 2015 on the E-Defense shaking table. First the damage assessment at global (building) and local (joint) level is performed at increasing intensities and considering the building in the base slip and base fixed configurations. A refined numerical model is then developed and validated against global and local experimental results. Then, the joint stirrups are re-designed according to different international standards (ACI, EC8, NZS) and different numerical models are developed. The numerical results are then compared in terms of interstorey drift demand and joint shear strain. Finally, a comparison in terms of expected damage varying the design approach of joint stirrups is proposed

    Ariel - Volume 8 Number 2

    Get PDF
    Executive Editor James W. Lockard , Jr. Issue Editor Doug Hiller Business Manager Neeraj K. Kanwal University News Richard J. Perry World News Doug Hiller Opinions Elizabeth A. McGuire Features Patrick P. Sokas Sports Desk Shahab S. Minassian Managing Editor Edward H. Jasper Managing Associate Brenda Peterson Photography Editor Robert D. Lehman, Jr. Graphics Christine M. Kuhnl

    RINTC-E: Towards seismic risk assessment of existing residential reinforced concrete buildings in Italy

    Get PDF
    The RINTC research project (RINTC Workgroup, 2018), financed by the Italian Department of Civil Protection, is aimed at evaluating the seismic risk of buildings conforming to the Italian building code. Within the framework of this project, the attention has been recently focused on existing buildings, too. In this study, case-study structures, representative of the existing residential reinforced concrete (RC) building stock in Italy, are analyzed. These structures are three-storey buildings with compact rectangular plan, and they have been defined through a simulated design process, in order to represent two types of buildings, namely designed for gravity loads only during 1970s (gravity load designed, GLD) or for moderate seismic loads during 1990s (seismic load designed, SLD). GLD buildings are assumed to be located in three different sites, namely Milan, Naples and Catania, in increasing order of seismic hazard. SLD buildings are assumed to be located in L'Aquila. The assumed design typologies are consistent with the seismic classification of the sites at the assumed ages of construction. The presence of typical nonstructural masonry infill walls (uniformly distributed in plan as external enclosure walls) is taken into account, assuming three configurations along height, namely “bare” (without infills), uniformly infilled and “pilotis” (without infills at the bottom storey) buildings. Two (not code-based) Limit States are investigated, namely Usability-Preventing Damage, corresponding to an interruption of the building use, and Collapse. RC elements are modelled with a lumped plasticity approach, through an empirical-based macromodel. The possible occurrence of shear failures in columns is taken into account through a preliminary classification of the expected failure mode (flexure- or shear-controlled, in the latter case prior to or following flexural yielding) and, if needed, a modification of the backbone of the nonlinear moment-chord rotation response, through empirical models providing the expected deformation capacity at shear and axial failure, the latter meant as the (initiation of) loss of axial-load-carrying-capacity. The nonlinear response of beam-column joints is modelled, too, with a “scissors model” based on concentrated springs representing the nonlinear response of the joint panel, at the intersection of beams' and columns' centerlines, through a preliminary evaluation of the expected failure mode (i.e. prior to or following yielding of adjacent beam/column elements). Materials properties are provided by literature studies, consistent with the age of construction of the buildings. The in-plane response of infills is modelled, taking into account the presence of openings, too. Modeling should be considered as simplified and, from some points of view, still preliminary, since advances are foreseen within the project in order to capture further failure modes that can occur in structural and nonstructural elements of older, nonductile RC buildings. Nonlinear static analyses, allowing to identify the (top) displacement capacity at the investigated Limit States, are carried out. Multiple stripe nonlinear time history bi-directional analyses of the three-dimensional structural models are carried out in order to evaluate the demand, for ten stripes - each corresponding to a return period ranging from 10 to 105 years - and for twenty couples of records for each stripe. Records were selected, within the activities of the research project, based on a Probabilistic Seismic Hazard Analysis at the sites of interest for the selected return periods. Results are illustrated, highlighting the role of a - although obsolete - seismic design in the response of the buildings and in their capacity, more specifically in terms of displacement capacity at Collapse, but also in terms of demand estimated from multiple stripe analyses. Finally, demand-to-capacity ratios at the investigated Limit States are analyzed, which allow, within the scope of the project, the assessment of the seismic risk of the case study structures
    • …
    corecore