
P R I M A L - I M P R O V: Towards Co-Evolutionary
Musical Improvisation

Marco Scirea1, Peter Eklund1, Julian Togelius2, and Sebastian Risi1

msci@itu.dk, petw@itu.dk, julian@togelius.com, sebr@itu.dk
1Center for Computer Games Research, Robotics, Evolution and Art Lab, IT University of Copenhagen, Denmark

2Department of Computer Science and Engineering, New York University, NY, USA

Abstract—This paper describes a work in progress on co-
evolving Artificial Neural Networks (ANNs) for music improvi-
sation. Using this neuro-evolutionary approach the ANNs adapt
to the changes in the human player’s music as input, while still
maintaining some of the structure of the musical piece previously
evolved. The system is called P R I M A L - I M P R O V and evolves
modules that are composed of two ANNs, one controlling pitch
and one controlling rhythm. The results of a quantitative study
show that, by only introducing simple rules as fitness functions,
the system is able to generate more interesting arrangements
than ANNs evolved without a specific objective. The emerging
and interesting musical patterns that are produced by the evolved
ANNs hint at the promising potential of the system.

I . I N T R O D U C T I O N

Improvements in computer science, evolutionary computation,
and music informatics have enabled many creative performance
systems producing music. The goal of most such systems is to
exhibit musicality, which is determined by a listening audience
or a performing musician. Many diverse approaches have been
applied to this domain due to the variety of methods in artificial
intelligence (reinforcement learning, evolutionary algorithms,
statistical modeling, etc), and to different interpretations and
genres of music applied to a specific method [1]. Another goal
of artistic expression is to create interesting structures that one
cannot immediately imagine. In musical history we find plenty
of rules and limitations (for example the 12-tone series), which
musicians use to create interesting content. In a way, simple
limitations help to support the creative process. Interactive
evolution, where human aesthetic judgment is included in the
fitness function, has often been used to guide evolutionary
creative systems. Another approach is to base the fitness
function on music theory to emulate the way a human would
play/compose. P R I M A L - I M P R O V, while still in its infancy,
presents a different approach by introducing very simple rules
in the fitness function, which do not necessarily need to rely on
musical theory. The most interesting feature is how, even though
the system generates music according to rules of our own
construction, musical structures emerge that are not obvious to
human creators. These structures arise from the freedom we
give to the Artificial Neural Networks (ANNs) to musically
express characteristics of their topology, thanks to the multitude
of ways that the fitness functions can be satisfied. Moreover,
by avoiding domain knowledge our system can create music
that transcends usual harmony, which can lead to unexpected

improvisations. Part of the architecture described in this paper
is inspired by MaestroGenesis [2], a tool for computer-assisted
composition that is based on interactive evolution. The main
difference between P R I M A L - I M P R O V and MaestroGenesis
is that our system does not require human input, but instead
co-evolves its multiple voices according to “primitive” fitness
functions. The system presented in this paper is based on the
idea of evolving improvisational modules, each capable of
creating monophonic melodies. The system can be used to
create accompaniments to predefined melodic phrases or, more
interestingly, provide an adaptive improvisational companion
to a human player. While there are other evolutionary real-
time improvisers (GenJam [3], Bown [4]), the proposed system
presents a novel modular architecture that allows for the creation
of an arbitrary music “instrument”. Finally, when considering
the real-time application of P R I M A L - I M P R O V, we can note
how the feedback loop between the player and the system
closes: as the musician plays, he/she finds out how the system
reacts to the music played; at the same time the system adapts
to the music the human is playing, this change will likewise
influence the musician, and so on.

I I . B A C K G R O U N D

A. Music Generation

Music generation is a field that has received much attention
in the last decade [5]. The approaches in the literature are
diverse and range from creating simple sound effects, to
avoiding repetition when playing human-authored music, to
creating more complex harmonic and melodic structures [6], [7].
Wooller [8] divides approaches to procedural music generation
into two categories, namely transformational and generative
algorithms. The field is too large to survey in the limited
space of a conference paper but we will give some relevant
and representative examples. There are many examples of
evolutionary algorithmic approaches to generating music, two
notable examples are the methods to evolve piano pieces
by Loughran et al. [9] and Dahlstedt [10], although many
more can be found in the Evolutionary Computer Music
book [11]. A relevant example of improvisation system is
Patchet’s Continuator [12], which is a Markov system that
learns from the musician’s input and produces accompaniment
accordingly. The main difference between this system and our
approach is that we believe P R I M A L - I M P R O V gives more

freedom of expression to the modules, creating something that
is less “dependent” on the human input.

B. Live algorithms

As discussed in the previous section, there are many ap-
plications of computers and algorithms to music that use the
computer-as-composer paradigm. In this section we briefly
discuss some of the other paradigms to better situate our
approach. Live coding is a practice that has become more and
more common among computer musicians where algorithms
produce music on the fly, while the musician can manipulate
these in real-time. We can define such use as computer-as-
instrument. In this approach the computer is just a tool that
relies on human agency. Blackwell et al. [13] proposed the
concept of Live algorithms for music (LAMs) as a way of
analyzing live music performance systems that, to some extent,
exhibit autonomy or agency. NN Music is a system that follows
this concept: it is a performer-machine system for Max/MSP1

that trains a feed-forward neural network mapped to stochastic
processes for musical outputs [14]. Another example, which
also uses Genetic Algorithms (GAs), is the system described
by Bown and Lexter for generative and interactive musical
performance [4]. While these systems present similarities with
the described system, exactly because they follow the same
LAM philosophy, our system presents a novel approach with
co-evolution of different “voices” (the modules).

C. NeuroEvolution of Augmenting Topologies

P R I M A L - I M P R O V uses artificial neural networks to pro-
duce music, these are evolved using the NeuroEvolution of
Augmenting Topologies (NEAT) genetic algorithm developed
by Ken Stanley [15]. The novelty of the algorithm is that
it evolves both the weighting parameters and structures of
networks, attempting to find a balance between the fitness of
evolved solutions and their diversity. Three main techniques are
key to this algorithm: i) tracking genes with history markers
to allow crossover among topologies, ii) applying speciation
to preserve innovations, and iii) developing topologies incre-
mentally from simple initial structures.

The specific artificial neural network structure we use is
called Compositional pattern-producing networks (CPPN) [16].
CPPNs differ from typical artificial neural networks in their set
of activation functions and how they are applied. These kind
of ANNs, combined with NEAT, have been used in various
research in creating art, including music [17], [18], images
[19], [20], and more [21].

D. Co-evolution: cooperative/competitive

Co-evolution is a process of reciprocal genetic change in one
species in response to another; this process can be observed in
nature where each party exerts selective pressures on the other,
as already observed by Darwin in the evolutionary interactions
between flowering plants and insects [22]. Co-evolution has
also been applied to evolutionary algorithms and in general is
divided in two categories: as a competitive arms race [23] or as a

1http://www.cycling74.com

cooperative effort. An example of the former is the co-evolution
of test cases for a problem (predators) with solutions (prey)
[24]. Conversely, in cooperative approaches, the populations
can be seen as components of the final solution [25], [26].

An interesting application of co-evolution applied to music
can be found in Living Music [27], a system where agents
are populating a virtual world and have to produce sounds
to mate. The aggregation of the sounds leads to the music
produced by the system. This system shares the philosophy
that for a system to be creative it should create structures that
one cannot immediately envision, and that from simple rules
complex behaviors can often arise. A key difference between
the objective of Living Music and the described system is
that our focus is on the interaction between human composed
music and the system, while Living Music creates completely
autonomous music.

E. Related systems: MetaCompose, MaestroGenesis

This section clarifies the connections between P R I M A L -
I M P R O V and two related systems: M E TA C O M P O S E and
MaestroGenesis. The M E TA C O M P O S E music generator is
a compositional, extensible framework for affective music
composition [28], [29]. P R I M A L - I M P R O V is designed to
also be a possible replacement for this “improvisational” part
of M E TA C O M P O S E, which is currently delegated to simple
human-made algorithms. MaestroGenesis [2] is also worth
discussing more in depth as it was a great inspiration for
P R I M A L - I M P R O V . MaestroGenesis is an implementation
of a computer-assisted approach to music generation called
functional scaffolding for musical composition (FSMC), whose
representation facilitates creative combination, exploration, and
transformation of musical ideas and spaces. Music in FSMC is
represented accordingly as a functional relationship between an
existing human composition, or scaffold, and a generated set of
one or more additional musical voices. Through MaestroGenesis
a human can explore how the generated voices relate to the
scaffolding through an interactive evolution process. Though
P R I M A L - I M P R O V shares some characteristics of MaestroGe-
nesis, it is an autonomous system where the interaction between
user and the program is not as explicit.

I I I . P R I M A L - I M P R O V

P R I M A L - I M P R O V is an evolutionary system which uses
NEAT in combination with co-evolution to create a real-
time (and offline) improvisational system. In the current
implementation of Primal-Improv two modules are evolved, but
the structure of the system will allow for an arbitrary amount
of these to be added, possibly creating a very large and diverse
instrumentation. The system is developed in C#, using the
SharpNeat2 library and the C# MIDI toolkit3.

A. Module architecture

A module is defined by a collection of components needed to
produce a monophonic melody in response to the environment’s

2http://sharpneat.sourceforge.net/
3https://www.codeproject.com/articles/6228/c-midi-toolkit

Fig. 1. Module components: the rhythm ANN that controls the durations of
the notes, and the pitch ANN that controls what pitch the new notes should
have. Each module listens (has as inputs) to the human-made melody and to
all the other modules to decide what to play (output).

state (see Figure 1). Each module “listens” to both the human
and all the other modules currently active, and according to
such inputs, decides what to play next.

Rhythm neural network: this ANN controls the duration of
the notes played by the module. The note duration is represented
as a decaying function, where the decay depends on the length
of the note (see the Representation subsection for a detailed
explanation). The ANN has as many inputs as the number of
currently active modules, plus an additional one for the human
player. It presents only one output, which can be represented
as the same type of function as those in input. A real-time
peak recognition algorithm (described below) is applied to this
function to identify when a note should end, in order to allow
the next note to begin.

Pitch neural network: this ANN determines the pitch that
should be played when the rhythm ANN determines that a
new note should be played. The ANN has as many inputs
as the number of currently active modules + one additional
input for the human player. These inputs are a representation
of the pitches being currently played. Note that the pitches are
represented as absolute pitches (without octave information),
meaning that a C4 and a C6 would have the same representation.

B. Evolutionary Algorithm

In this section we describe the function of the GA, with the
assumption that only two modules are being evolved, yet the
structure should be expandable to an arbitrary amount of these,
in the Conclusion section we discuss what kind of challenges
will need to be addressed to achieve this.

For each module the system has to run two instances of
a NEAT GA: one for the Rhythm ANN and one for the
Pitch ANN. In the described case, this means the system is
running four separate evolutionary algorithms. These four are
almost identical, apart from the fitness functions, which differ
between Rhythm and Pitch ANNs. As stated before, this is
a cooperative co-evolutionary algorithm, which means that
the individuals of the four populations are not evaluated by
themselves: individuals are chosen from each of the populations,
the sampled ANNs are used together to produce music, this is
evaluated, and the computed fitness value is propagated to the
ANNs.

To illustrate via a practical example: each generation the
population of Pitch ANNs for module 1 will be used in
conjunction with the highest scoring Pitch ANNs for module 2
to create some outputs using the following formula:

f(P
′

i) =

∑n
j=1 fPitch(P

′

i ,PChamp
′′

j)

n
,

where f is the fitness function of a specific individual, P
′

i is
an individual i of the module 1 Pitch GA, fPitch is the fitness
evaluation of the pitches produced by the input ANNs, and
PChamp

′′

j is one of the n champions (best individuals from
the previous generations) of the module 2 Pitch GA.

Likewise, the fitness for specific individual of the Rhythm
GAs is calculated as:

f(R
′

i) =

∑n
j=1 fRhythm(R

′

i,RChamp
′′

j)

n
,

where R
′

i is an individual i of the module 1 Rhythm GA,
fRhythm is the fitness evaluation of the durations produced by
the input ANNs, and RChamp

′′

j is one of the n champions of
the module 2 Rhythm GA.

The fitnesses for the module 2 GAs are constructed analo-
gously using the champions of the module 1 GAs.

As stated earlier, the fitness functions are calculated on the
outputs of the Rhythm ANNs (and Pitch ANNs) of all the
modules. These fitnesses are calculated using a human-made
reference phrase, in the real-time application: this is a recording
of the last notes played by the user, while in the static case
it uses the first five notes of a provided piece. We decided to
keep these functions simple to observe emergent behaviors and
give more freedom to the ANNs.

The fitness for the Rhythm ANNs is calculated as:

fRhythm(R
′

i,RChamp
′′

j) = −(Few + SameDuration),

where Few is a function that measures if too few notes have been
produced (in the current implementation the minimum threshold
is three), and SameDuration is a function that discourages the
modules from producing the same rhythmic pattern.

The fitness for the Pitch ANNs is calculated as:

fPitch(P
′

i ,PChamp
′′

j) = −(SamePitch+

Identity + OutOfKey),

where SamePitch is a function that discourages the modules
from producing the same pitches, Identity counts the number
of times the pitches produced by each module are the same,
and OutOfKey counts the times the produced pitches are out
of key, with respect to a predefined key.

SharpNeat represents neural networks as collection of nodes
and weights connecting the nodes. As SharpNeat has not been
changed in this project, we refer the reader to the SharpNeat
page for more details.

What is more interesting is how the system interprets inputs
and outputs: the Pitch ANNs translate the absolute pitches in
values in the range [0, 1]: PitchInput(P) = P/12, where P is
an absolute pitch, which can range from [0, 11] and ∈ N , this

Fig. 2. Representation of rhythm, from the top: input rhythm, decaying function
f(I) representing the input, output of the network (in green the recognized
peaks), output rhythm g(O).

procedure divides the interval in twelve parts, each of them
representing one of the twelve notes commonly used in Western
music. In this way a function to interpret the outputs can easily
be determined: PitchOutput(o) = 12o, where PitchOutput(o) ∈
N , o is the output value of the ANN which has range [0, 1].

Durations are instead represented as a sawtooth function,
which generates a spike that decays according to the duration
of the note (Figure 2). This is a function of time, which
is represented as MIDI ticks (24 per quarter note). This
representation is inspired by Hoover’s functional scaffolding
for composing additional music voices [2], which allows the
networks to learn when new notes are played while allowing
for more freedom in creating non-standard durations. The decay
corresponding to the input duration can be calculated as:

Decay =
1

duration · PPQN · 4
,

where PPQN is the ticks (or pulses) per quarter note.
Once the decay is calculated, the values for each tick can

be found by subtracting the decay from the previous value:
xn = xn−1 − Decay.

The Rhythm ANN outputs a value for each tick, and peaks
in this function are interpreted as the start of a new note. The
peak detection algorithm is called Smoothed z-score4. It is
based on the principle of dispersion: when a data-point is x
standard deviations away from the moving mean a new peak
is signaled. The algorithm creates a separate moving mean
and standard deviation, meaning that the signals do not risk
corrupting the threshold.

C. Real-Time

In the real-time application of the system the user is able
to use a computer keyboard to play notes; as notes are played
the modules receive them as inputs for the Rhythm and Pitch
ANNs and calculate if and what notes to play. As the user is
playing, a recording module keeps a queue of the last notes
played and, after a predefined passage of time, a message
is sent to update the reference phrase in the evolutionary

4https://stackoverflow.com/questions/22583391/peak-signal-detection-in-
realtime-timeseries-data/22640362

Fig. 3. Representation of the Real-time architecture of Primal-Improv. The
human player is recorded by a component which periodically updates the
reference phrase driving the evolutionary algorithm. At the same time the
modules in the GA are passed to the synthesizer to use until the next time
interval has passed.

TABLE I
N U M B E R O F C O R R E C T , I N C O R R E C T A N D N E U T R A L A N S W E R S T O

O U R C R I T E R I A F O R T H E C O M P L E T E S Y S T E M A G A I N S T T H E
V E R S I O N W I T H R A N D O M F I T N E S S F U N C T I O N . A L S O I N C L U D E D
T H E p- VA L U E S C A L C U L AT E D U S I N G A T W O - TA I L E D B I N O M I A L

T E S T A N D T H E B I N O M I A L E F F E C T S I Z E D I S P L AY (B E S D) .
N O T E T H AT I N T H E C A S E O F T H E R A N D O M C R I T E R I A T H E

L I S T E N E R I S A S K E D T O S E L E C T T H E C L I P T H AT H E / S H E F E E L S
T H E M O S T R A N D O M , S O I T I S E X P E C T E D T H AT L E S S P E O P L E

P R E F E R R E D T H E C O M P L E T E S Y S T E M .

Choice Pleasing Random Interesting Harmonious
Preferred the
complete system 307 185 261 294

Preferred the
random fitness 151 226 151 164

Neutral answer 77 124 123 77
Total non-neutral
answers 458 411 412 458

Binomial test
p-value 2.60E-13 0.04836 6.62E-08 1.30E-09

BESD 34.10% -10% 26.70% 28.40%

algorithm with said recording. At the same time, as the reference
phrase is updated, the current best individuals are pushed
to the synthesizer where they will replace the previous best
individuals. The program allows for minimal user control over
the system: mainly switching on/off the modules. The current
implementation keeps the last ten notes played by the user and
switches the reference phrase every ten seconds.

I V. E VA L U AT I O N

This section describes a quantitative user study designed as
a preliminary evaluation of the musical product of the system.
As music is (at least partly) a subjective matter, we evaluate
it through a preference questionnaire to listeners distributed
over the Internet. Participants are asked to indicate which of
two pieces of music they prefer; one of these is generated
with the complete system (as described in the previous section)
and the other using a random fitness function. We realize
that comparing against a random fitness function doesn’t prove
music quality, but allows us to identify (i) if the emergent music
patterns are caused by the architecture of the system and (ii)
if the introduction of small evolutionary pressure is enough to
perceptively improve the result. Quality is evaluated according

to four criteria: pleasantness, randomness, harmoniousness
and interestingness. We chose these criteria to cover different
aspects or dimensions of perceived quality of music. Our
intended interpretation of the criteria is presented below. Note
that no definition of these terms is offered in the survey, and
there is therefore no guarantee that participants interpret these
criteria the same way we do.

Pleasantness intends to measure how pleasing to the ear
the piece is, but this alone is not sufficient to describe the
quality of the music produced. There are countless pieces
of music that do not sound pleasant, but may nonetheless be
considered by the listener as “good” music. In fact, in music,
often uncommon (and even discordant) chord sequences or
intervals are introduced to express different features in a score,
such as affect, as well as other narrative information. Also
note that some alterations or passages can be specific of a
music style or genre. Moreover, discordant intervals are more
acceptable to the ear the more often they are repeated (see
dodecaphonic music [30] for example).

Interestingness is introduced to overcome the just described
limitations of the pleasantness criteria: in this way we intend
to test if one of our “broken” scores might introduce something
more interesting to the listener, even when the composition is
not necessarily pleasant or harmonic. Note that this is a very
subjective measure, as most people have a different opinion
about how interesting they perceive a score to be.

On the other hand, harmoniousness might be confused with
pleasantness, but we hope that it will be seen as a somewhat
more objective measure: less of a personal preference and more
of a measure of the listener’s ability to recognize the presence
of dissonances and harmonic passages.

Finally, randomness intends to gather a measure of how struc-
tured the music sounds to the listener. It is not only a measure
of dissonance, but also of the extent the music seems to have
a cohesive quality and coherent internal structure. Examples of
coherent internal structure are: (i) voices working together well
(ii) coherent rhythmic structure (iii) chord sequences presenting
tension building and eventual resolution.

An online survey was developed with HTML and PHP, using
a MySQL database to hold the data collected. Participants were
presented with pairs-wise music clips and asked to evaluate
them using the four criteria described. Each of the four criteria
has a multiple choice question structured as:

Which piece do you find more pleasing? “Clip
A”/“Clip B”/“Neither”/ “Both Equally”

Where the last word (e.g. “pleasing”) is dependent on the
criteria. We also include the more neutral answers “Neither”
and “Both Equally” to avoid randomness in the data from
participants who cannot decide which clip satisfies their
evaluation, according to the criteria better or worse. Other
benefits of doing this are: avoiding participant frustration, and
giving us potential information on interesting individual pairs,
where the pieces are considered equally good/bad.

Music Piece Generation: Eight clips were created for
each group (normal and random fitness), for a total of 16

pieces5. The system was allowed to evolve for 100 generations,
using the first ten notes of the melody as a reference point for the
evolution. The clips used in the experiment were not selected
from a pool, but were the result of a singular execution of the
program. The melodies used are a mix of classical melodies,
traditional songs and one melody composed by the author.

Results and Analysis: The data collected amounts to
538 answers for each of the four evaluation criteria from
87 participants. Table I shows how many responses were
obtained for each criteria and how many neutral answers were
collected. For now we only consider definitive answers (i.e.
the participant chooses one of the music clips presented); we
will look at the impact of the neutral answers at the end of this
section. Under the definite choice constraint, the data becomes
boolean: the answers are either “user preferred the complete
system” or “user preferred the random fitness function”. To
analyze this data we use a two-tailed binomial test, which is
an exact test of the statistical significance of deviations from a
theoretically expected random distribution of observations in
the two categories. The null hypothesis is that both categories
are equally likely to occur and, as we have only two possible
outcomes, that probability is 0.5. The Binomial Effect Size
Display (BESD) [31] is another way of looking at the effects
of treatments by considering the increase of success through
interventions. This is an interesting measure, as it elucidates
how much of an effect is created, in our case, by the introduction
of even very simple fitness functions.

As can be seen in Table I, there is a strong statistical
significance (p < 0.05) for all the criteria, although there is a
clearly smaller effect on the randomness criteria (p ≈ 0.048)
This means that the null hypothesis can be refuted and a
difference in distribution can be inferred between choosing
the music generated with (and without) the described fitness
functions.This indicates that music generated by the complete
system is considered more pleasing, less random, more in-
teresting and more harmonious than music generated by the
degenerate system with random fitness. The BESD values
reflect what can be inferred from the p-values; it can be
observed that for the randomness criterion the effect is small
(-10%) confirming that, while the p-value is significant, people
can not easily distinguish emergent musical structures. This
result could be explained by the high freedom left to the ANNs
and by the short size of the generated pieces, which might not
have been long enough for participants to discern emergent
patterns and make a judgment.

Demographics: Our participant’s population is composed
by 62 males, 14 females, and 7 people that did not specify their
gender. The average age is 37.46 (stdev 17.72). Participants
were asked to rate their skill with a music instrument and their
knowledge of music theory according to a five point Likert
scale (0 to 4). The participants reported a similar level of
musical training (avg: 1.11, stdev: 1.01, mode: 0) and instrument
skill (avg: 1.36, stdev: 1.19, mode: 0). The homogeneity of

5The list and the generated music for the various groups can be accessed at
https://goo.gl/2cqZL9.

the population may explain how, however we partition the
population, we find no significant difference in the results.

V. C O N C L U S I O N S

This paper describes a system for co-evolution of melody-
producing modules, which can work both as an arranger for
a predefined melody, or a real-time improvisational system.
The main features of the system are: emergence of musical
structures out of very simple rules, not requiring direct human
input, and adaptiveness to a human musician. A quantitative
user study has been described, comparing the complete system
with one using a random fitness function. As described in
the Results and Analysis session we have shown a statistical
significant preference in all criteria (interestingness, less ran-
domness, pleasingness and harmoniousness) for the complete
system. This shows that the fitness function evaluated, while
extremely simple, does guide the evolution of the modules to
create something more interesting than the networks themselves
could otherwise produce. Clearly this does not prove that the
system actually produces interesting music, but we believe it
is a first step in showing the potential of P R I M A L - I M P R O V.

This system is still in its infancy and there are many
improvements that can be implemented. An example is that
the current implementation of the system is limited to two
modules, it would be interesting to find out how the system
reacts with a larger number. The fitness functions will likely
require adjustment to avoid a cacophony effect, due to too many
modules playing simultaneously. An interesting phenomenon
that appears in some of the music pieces created for the user
study is a “ringing” effect (like an old time phone): this is
due to the neural networks producing very short notes (1/96th
of a measure) repeatedly. This is a very “non-human” way
of playing and, while emulating a human player is not an
objective of the system, this effect seems to be negatively
perceived by listeners, so it might need to be addressed and
eliminated. We plan to conduct qualitative experiments with
musicians playing with the system in real-time, in order to find
out how the interaction between the players unfolds, and what
kind of creative improvisations can emerge.

In summary, we present (i) a novel co-evolutioary system
for improvisation and melody arrangement and (ii) a quanti-
tative study showing how even from very simple rules some
interesting content seems to emerge.

R E F E R E N C E S

[1] P. M. Todd and G. M. Werner, “Frankensteinian methods for evolutionary
music,” Musical networks: parallel distributed perception and performace,
pp. 313–340, 1999.

[2] A. K. Hoover, P. A. Szerlip, and K. O. Stanley, “Functional scaffolding
for composing additional musical voices,” Computer Music Journal, 2014.

[3] J. A. Biles, “Genjam: A genetic algorithm for generating jazz solos,” in
ICMC, vol. 94, 1994, pp. 131–137.

[4] O. Bown and S. Lexer, “Continuous-time recurrent neural networks
for generative and interactive musical performance,” in Workshops on
Applications of Evolutionary Computation. Springer, 2006, pp. 652–663.

[5] E. R. Miranda, Readings in music and artificial intelligence. Routledge,
2013, vol. 20.

[6] M. Edwards, “Algorithmic Composition: Computational Thinking in
Music,” Commun. ACM, vol. 54, no. 7, pp. 58–67, Jul. 2011. [Online].
Available: http://doi.acm.org/10.1145/1965724.1965742

[7] D. Cope, “Algorithmic Music Composition,” in Patterns of Intuition,
G. Nierhaus, Ed. Springer Netherlands, 2015, pp. 405–416, dOI:
10.1007/978-94-017-9561-6 19.

[8] R. Wooller, A. R. Brown, E. Miranda, J. Diederich, and R. Berry, “A
framework for comparison of process in algorithmic music systems,” in
Generative Arts Practice 2005 — A Creativity & Cognition Symposium,
2005.

[9] R. Loughran, J. McDermott, and M. O’Neill, “Tonality driven piano com-
positions with grammatical evolution,” in IEEE Congress on Evolutionary
Computation (CEC). IEEE, 2015, pp. 2168–2175.

[10] P. Dahlstedt, “Autonomous evolution of complete piano pieces and
performances,” in Proceedings of Music AL Workshop. Citeseer, 2007.

[11] E. R. Miranda and A. Biles, Evolutionary computer music. Springer,
2007.

[12] F. Pachet, “The continuator: Musical interaction with style,” Journal of
New Music Research, vol. 32, no. 3, pp. 333–341, 2003.

[13] T. Blackwell, O. Bown, and M. Young, “Live algorithms: towards au-
tonomous computer improvisers,” in Computers and Creativity. Springer,
2012, pp. 147–174.

[14] M. Young, “Nn music: improvising with a livingcomputer,” in Interna-
tional Symposium on Computer Music Modeling and Retrieval. Springer,
2007, pp. 337–350.

[15] K. O. Stanley and R. Miikkulainen, “Evolving neural networks through
augmenting topologies,” Evolutionary computation, vol. 10, no. 2, pp.
99–127, 2002.

[16] K. O. Stanley, “Compositional pattern producing networks: A novel ab-
straction of development,” Genetic programming and evolvable machines,
vol. 8, no. 2, pp. 131–162, 2007.

[17] P. A. Szerlip, A. K. Hoover, and K. O. Stanley, “Maestrogenesis:
Computer-assisted musical accompaniment generation,” 2012.

[18] B. T. Jónsson, A. K. Hoover, and S. Risi, “Interactively evolving
compositional sound synthesis networks,” in Proceedings of the 2015
Annual Conference on Genetic and Evolutionary Computation. ACM,
2015, pp. 321–328.

[19] J. Secretan, N. Beato, D. B. D Ambrosio, A. Rodriguez, A. Campbell, and
K. O. Stanley, “Picbreeder: evolving pictures collaboratively online,” in
Proceedings of the SIGCHI Conference on Human Factors in Computing
Systems. ACM, 2008, pp. 1759–1768.

[20] S. Risi, J. Lehman, D. B. D’Ambrosio, R. Hall, and K. O. Stanley,
“Combining search-based procedural content generation and social gaming
in the petalz video game.” in Aiide. Citeseer, 2012.

[21] N. Cheney, R. MacCurdy, J. Clune, and H. Lipson, “Unshackling evolution:
evolving soft robots with multiple materials and a powerful generative
encoding,” in Proceedings of the 15th annual conference on Genetic and
evolutionary computation. ACM, 2013, pp. 167–174.

[22] C. Darwin, “The origin of species by means of natural selection: or, the
preservation of favored races in the struggle for life,” 1859.

[23] C. D. Rosin and R. K. Belew, “New methods for competitive coevolution,”
Evolutionary computation, vol. 5, no. 1, pp. 1–29, 1997.

[24] W. D. Hillis, “Co-evolving parasites improve simulated evolution as an
optimization procedure,” Physica D: Nonlinear Phenomena, vol. 42, no.
1-3, pp. 228–234, 1990.

[25] C. C. Coello and M. R. Sierra, “A coevolutionary multi-objective
evolutionary algorithm,” in Evolutionary Computation, 2003. CEC’03.
The 2003 Congress on, vol. 1. IEEE, 2003, pp. 482–489.

[26] M. A. Potter and K. A. De Jong, “Cooperative coevolution: An architec-
ture for evolving coadapted subcomponents,” Evolutionary computation,
vol. 8, no. 1, pp. 1–29, 2000.

[27] P. Dahlstedt and M. G. Nordahl, “Living melodies: Coevolution of sonic
communication,” Leonardo, vol. 34, no. 3, pp. 243–248, 2001.

[28] M. Scirea, J. Togelius, P. Eklund, and S. Risi, “Metacompose: A
compositional evolutionary music composer,” in International Conference
on Evolutionary and Biologically Inspired Music and Art. Springer,
2016, pp. 202–217.

[29] ——, “Affective evolutionary music composition with metacompose,”
Genetic Programming and Evolvable Machines, pp. 1–33, 2017.

[30] G. Perle, Serial composition and atonality: an introduction to the music
of Schoenberg, Berg, and Webern. Univ of California Press, 1972.

[31] R. Rosenthal and D. B. Rubin, “A simple, general purpose display of
magnitude of experimental effect.” Journal of educational psychology,
vol. 74, no. 2, p. 166, 1982.

