51 research outputs found

    Implementation of a rapid learning platform: predicting 2-year survival in laryngeal carcinoma patients in a clinical setting

    Get PDF
    Background and Purpose To improve quality and personalization of oncology health care, decision aid tools are needed to advise physicians and patients. The aim of this work is to demonstrate the clinical relevance of a survival prediction model as a first step to multi institutional rapid learning and compare this to a clinical trial dataset. Materials and Methods Data extraction and mining tools were used to collect uncurated input parameters from Illawarra Cancer Care Centre\u27s (clinical cohort) oncology information system. Prognosis categories previously established from the Maastricht Radiation Oncology (training cohort) dataset, were applied to the clinical cohort and the radiotherapy only arm of the RTOG-9111 (trial cohort). Results Data mining identified 125 laryngeal carcinoma patients, ending up with 52 patients in the clinical cohort who were eligible to be evaluated by the model to predict 2-year survival and 177 for the trial cohort. The model was able to classify patients and predict survival in the clinical cohort, but for the trial cohort it failed to do so. Conclusions The technical infrastructure and model is able to support the prognosis prediction of laryngeal carcinoma patients in a clinical cohort. The model does not perform well for the highly selective patient population in the trial cohort

    Identification of the electrical load by C-means from non-intrusive monitoring of electrical signals in non-residential buildings

    Get PDF
    Producción CientíficaLa acción combinada de diferentes equipos conectados a una instalación eléctrica es capaz de provocar cambios inesperados en el tipo de carga dentro de la instalación; estas variaciones de carga son responsables de algunas fallas eléctricas. En este artículo se presenta una metodología para clasificar e identificar los tipos de carga en entornos industriales. Las cantidades de energía (EPQ) y los valores actuales se utilizan para establecer índices con el fin de utilizarlos como características para un algoritmo C-means y realizar la clasificación de carga. La experimentación se realiza en un centro de salud recogiendo datos eléctricos en diferentes tableros de distribución eléctrica. Los resultados obtenidos del método de clasificación muestran variaciones en el comportamiento de la carga a lo largo del día. Además, algunas clases se pueden utilizar para reconocer equipos en la instalación eléctrica para su posterior inspección o detección de fallas

    A semiautomatic CT-based ensemble segmentation of lung tumors: Comparison with oncologists’ delineations and with the surgical specimen

    Get PDF
    AbstractPurposeTo assess the clinical relevance of a semiautomatic CT-based ensemble segmentation method, by comparing it to pathology and to CT/PET manual delineations by five independent radiation oncologists in non-small cell lung cancer (NSCLC).Materials and methodsFor 20 NSCLC patients (stages Ib–IIIb) the primary tumor was delineated manually on CT/PET scans by five independent radiation oncologists and segmented using a CT based semi-automatic tool. Tumor volume and overlap fractions between manual and semiautomatic-segmented volumes were compared. All measurements were correlated with the maximal diameter on macroscopic examination of the surgical specimen. Imaging data are available on www.cancerdata.org.ResultsHigh overlap fractions were observed between the semi-automatically segmented volumes and the intersection (92.5±9.0, mean±SD) and union (94.2±6.8) of the manual delineations. No statistically significant differences in tumor volume were observed between the semiautomatic segmentation (71.4±83.2cm3, mean±SD) and manual delineations (81.9±94.1cm3; p=0.57). The maximal tumor diameter of the semiautomatic-segmented tumor correlated strongly with the macroscopic diameter of the primary tumor (r=0.96).ConclusionsSemiautomatic segmentation of the primary tumor on CT demonstrated high agreement with CT/PET manual delineations and strongly correlated with the macroscopic diameter considered as the “gold standard”. This method may be used routinely in clinical practice and could be employed as a starting point for treatment planning, target definition in multi-center clinical trials or for high throughput data mining research. This method is particularly suitable for peripherally located tumors

    CT-based radiomic signature predicts distant metastasis in lung adenocarcinoma

    Get PDF
    BACKGROUND AND PURPOSE: Radiomics provides opportunities to quantify the tumor phenotype non-invasively by applying a large number of quantitative imaging features. This study evaluates computed-tomography (CT) radiomic features for their capability to predict distant metastasis (DM) for lung adenocarcinoma patients. MATERIAL AND METHODS: We included two datasets: 98 patients for discovery and 84 for validation. The phenotype of the primary tumor was quantified on pre-treatment CT-scans using 635 radiomic features. Univariate and multivariate analysis was performed to evaluate radiomics performance using the concordance index (CI). RESULTS: Thirty-five radiomic features were found to be prognostic (CI > 0.60, FDR < 5%) for DM and twelve for survival. It is noteworthy that tumor volume was only moderately prognostic for DM (CI=0.55, p-value=2.77 × 10(−5)) in the discovery cohort. A radiomic-signature had strong power for predicting DM in the independent validation dataset (CI=0.61, p-value=1.79 ×10(−17)). Adding this radiomic-signature to a clinical model resulted in a significant improvement of predicting DM in the validation dataset (p-value=1.56 × 10(−11)). CONCLUSIONS: Although only basic metrics are routinely quantified, this study shows that radiomic features capturing detailed information of the tumor phenotype can be used as a prognostic biomarker for clinically-relevant factors such as DM. Moreover, the radiomic-signature provided additional information to clinical data

    Large-scale wearable data reveal digital phenotypes for daily-life stress detection

    Get PDF
    Physiological signals have shown to be reliable indicators of stress in laboratory studies, yet large-scale ambulatory validation is lacking. We present a large-scale cross-sectional study for ambulatory stress detection, consisting of 1002 subjects, containing subjects' demographics, baseline psychological information, and five consecutive days of free-living physiological and contextual measurements, collected through wearable devices and smartphones. This dataset represents a healthy population, showing associations between wearable physiological signals and self-reported daily-life stress. Using a data-driven approach, we identified digital phenotypes characterized by self-reported poor health indicators and high depression, anxiety and stress scores that are associated with blunted physiological responses to stress. These results emphasize the need for large-scale collections of multi-sensor data, to build personalized stress models for precision medicine

    Volumetric CT-based segmentation of NSCLC using 3D-Slicer

    Get PDF
    Accurate volumetric assessment in non-small cell lung cancer (NSCLC) is critical for adequately informing treatments. In this study we assessed the clinical relevance of a semiautomatic computed tomography (CT)-based segmentation method using the competitive region-growing based algorithm, implemented in the free and public available 3D-Slicer software platform. We compared the 3D-Slicer segmented volumes by three independent observers, who segmented the primary tumour of 20 NSCLC patients twice, to manual slice-by-slice delineations of five physicians. Furthermore, we compared all tumour contours to the macroscopic diameter of the tumour in pathology, considered as the “gold standard”. The 3D-Slicer segmented volumes demonstrated high agreement (overlap fractions > 0.90), lower volume variability (p = 0.0003) and smaller uncertainty areas (p = 0.0002), compared to manual slice-by-slice delineations. Furthermore, 3D-Slicer segmentations showed a strong correlation to pathology (r = 0.89, 95%CI, 0.81–0.94). Our results show that semiautomatic 3D-Slicer segmentations can be used for accurate contouring and are more stable than manual delineations. Therefore, 3D-Slicer can be employed as a starting point for treatment decisions or for high-throughput data mining research, such as Radiomics, where manual delineating often represent a time-consuming bottleneck

    Robust Radiomics Feature Quantification Using Semiautomatic Volumetric Segmentation

    Get PDF
    Due to advances in the acquisition and analysis of medical imaging, it is currently possible to quantify the tumor phenotype. The emerging field of Radiomics addresses this issue by converting medical images into minable data by extracting a large number of quantitative imaging features. One of the main challenges of Radiomics is tumor segmentation. Where manual delineation is time consuming and prone to inter-observer variability, it has been shown that semi-automated approaches are fast and reduce inter-observer variability. In this study, a semiautomatic region growing volumetric segmentation algorithm, implemented in the free and publicly available 3D-Slicer platform, was investigated in terms of its robustness for quantitative imaging feature extraction. Fifty-six 3D-radiomic features, quantifying phenotypic differences based on tumor intensity, shape and texture, were extracted from the computed tomography images of twenty lung cancer patients. These radiomic features were derived from the 3D-tumor volumes defined by three independent observers twice using 3D-Slicer, and compared to manual slice-by-slice delineations of five independent physicians in terms of intra-class correlation coefficient (ICC) and feature range. Radiomic features extracted from 3D-Slicer segmentations had significantly higher reproducibility (ICC = 0.85±0.15, p = 0.0009) compared to the features extracted from the manual segmentations (ICC = 0.77±0.17). Furthermore, we found that features extracted from 3D-Slicer segmentations were more robust, as the range was significantly smaller across observers (p = 3.819e-07), and overlapping with the feature ranges extracted from manual contouring (boundary lower: p = 0.007, higher: p = 5.863e-06). Our results show that 3D-Slicer segmented tumor volumes provide a better alternative to the manual delineation for feature quantification, as they yield more reproducible imaging descriptors. Therefore, 3D-Slicer can be employed for quantitative image feature extraction and image data mining research in large patient cohorts

    'Rapid Learning health care in oncology' – An approach towards decision support systems enabling customised radiotherapy' ☆ ☆☆

    Get PDF
    AbstractPurposeAn overview of the Rapid Learning methodology, its results, and the potential impact on radiotherapy.Material and resultsRapid Learning methodology is divided into four phases. In the data phase, diverse data are collected about past patients, treatments used, and outcomes. Innovative information technologies that support semantic interoperability enable distributed learning and data sharing without additional burden on health care professionals and without the need for data to leave the hospital. In the knowledge phase, prediction models are developed for new data and treatment outcomes by applying machine learning methods to data. In the application phase, this knowledge is applied in clinical practice via novel decision support systems or via extensions of existing models such as Tumour Control Probability models. In the evaluation phase, the predictability of treatment outcomes allows the new knowledge to be evaluated by comparing predicted and actual outcomes.ConclusionPersonalised or tailored cancer therapy ensures not only that patients receive an optimal treatment, but also that the right resources are being used for the right patients. Rapid Learning approaches combined with evidence based medicine are expected to improve the predictability of outcome and radiotherapy is the ideal field to study the value of Rapid Learning. The next step will be to include patient preferences in the decision making
    corecore