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Purpose: An overview of the Rapid Learning methodology, its results, and the potential impact on radio-
therapy.
Material and results: Rapid Learning methodology is divided into four phases. In the data phase, diverse
data are collected about past patients, treatments used, and outcomes. Innovative information technol-
ogies that support semantic interoperability enable distributed learning and data sharing without addi-
tional burden on health care professionals and without the need for data to leave the hospital. In the
knowledge phase, prediction models are developed for new data and treatment outcomes by applying
machine learning methods to data. In the application phase, this knowledge is applied in clinical practice
via novel decision support systems or via extensions of existing models such as Tumour Control Proba-
bility models. In the evaluation phase, the predictability of treatment outcomes allows the new knowl-
edge to be evaluated by comparing predicted and actual outcomes.
Conclusion: Personalised or tailored cancer therapy ensures not only that patients receive an optimal
treatment, but also that the right resources are being used for the right patients. Rapid Learning
approaches combined with evidence based medicine are expected to improve the predictability of out-
come and radiotherapy is the ideal field to study the value of Rapid Learning. The next step will be to
include patient preferences in the decision making.

� 2013 The Authors. Published by Elsevier Ireland Ltd. Radiotherapy
and Oncology 109 (2013) 159–164
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Tailored cancer therapies, in which specific information about
patients and tumours is taken into account during treatment deci-
sions, are an important step forward from current population-
based therapy [1] However, given the developments outlined be-
low, it is becoming increasingly difficult to identify the best treat-
ment for an individual cancer patient:

� Tumours and patients seem to be even less homogeneous than
previously assumed, meaning the same treatments can have
different outcomes in patients who have the same type of
tumour. For instance, there are at least four molecular subtypes
of breast cancer, each with very different outcomes [2]. Based
on gene signatures various subgroups of tumours can be identi-
fied [3–8].
� The number of treatment options is increasing. For example,

early stage prostate cancer can now be treated with conserva-
tive treatment, prostatectomy, external radiotherapy, stereotac-
tic radiotherapy, LDR or HDR brachytherapy, high-intensity
focused ultrasound, hormone therapy, combination therapies
and so on. A different example is the recent rise of targeted
therapies that are rapidly growing in numbers. Performing clas-
sic randomised trials to compare all new treatment options
with the ‘‘gold standard’’ is becoming impossible by the current
speed of innovation.
� The evidence for the right choice in an individual patient is

inadequate. First, ‘evidence-based medicine’ and the ensuing
guidelines always lag somewhat behind practice, particularly
in highly technological, innovative and rapidly evolving fields
such as radiotherapy. In addition, translating the results of clin-
ical trials to the general patient population and environment is
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Fig. 2. Four phases of Rapid Learning [13].
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not straightforward, given the higher quality of care in clinical
trials and the known selection bias (trials reach no more than
3% of cancer patients, in radiotherapy this figure is even lower)
[9–11]. Finally, given the developments mentioned above –
more treatment options and less homogeneous patient groups
– the urgency to scaffold our treatment decisions with robust
knowledge and the demand for evidence-based medicine is lar-
ger than ever.
� It is becoming more difficult to find the right evidence. Despite

– or perhaps due to – the fact that papers are being published in
rapidly increasing numbers (e.g., as a radiation-oncologist spe-
cialising in lung cancer, has to read around eight articles per
day to keep up with the literature [12]), it is difficult to match
the characteristics of the individual patient to evidence from
the literature and to evaluate the quality of that evidence.

The developments illustrated above have given rise to a search
for an alternative to the elaborate consensus- and evidence-based
guideline medicine format when it comes to making treatment
decisions. The alternative discussed in this article is rapid learning
[13]. Although it is known under various names, including Knowl-
edge-driven Healthcare, Computer Assisted Theragnostics and
Learning Intelligence Network, the basic idea in all cases is the (re)-
use of historical data from routine clinical practice for decisions
concerning new patients or to test new hypothesis [14–19]
(Fig. 1). This has a number of obvious advantages, such as the large
number of readily available patients and less selection bias com-
pared to clinical trials. However, it also has some important disad-
vantages; for example, the quality of the data in clinical practice is
much lower than in clinical trials [20]. There is a long very success-
ful history of putting genomic data public and reusing them [3–8].

This paper provides an overview of the methods used in Rapid
Learning, the initial results, and an outlook as to how the tech-
niques involved may influence clinical radiotherapy.
Methods and results

Rapid Learning involves four phases (Fig. 2) [13] which are con-
tinually iterated. In the data phase, data on past patients are col-
lected, including their delivered treatments and outcomes. In the
knowledge phase, knowledge is generated from these data. In the
application phase, this knowledge is applied to clinical practice.
In the final evaluation phase, the outcomes are evaluated, after
which the first phase starts again. In every phase, external knowl-
Fig. 1. Current paradigm versus future paradigm (modified from [43]).
edge (e.g., from clinical trials) is used to optimise the phase. The
sections below describe the methods used and examples of typical
results for every phase.
Data

Rapid Learning requires both a great deal of data and a large
diversity of data. The amount of data is important (a) to obtain
higher quality knowledge (the quality of the knowledge correlates
with the number of patients on which that knowledge is based)
and (b) to be able to generate knowledge concerning smaller, more
homogeneous patient groups and/or use more variables in the
knowledge phase. The diversity of the data (particularly with re-
spect to the treatments used, but also in terms of patient character-
istics) is important to ultimately decide which treatment is best for
an individual patient.

Obtaining enough data of sufficient quality and diversity is the
biggest challenge in Rapid Learning. This is only possible if data are
shared across institutional and national borders, both academic
and community health care systems. Such data sharing is ham-
pered by a lack of time; differences in language and culture as well
as data recording practices; the academic and political value of
data; risks to reputation; privacy and legal aspects and so on.
Nonetheless, one project that has made successful use of data shar-
ing is euroCAT (www.eurocat.info), a collaborative project involv-
ing radiotherapy institutes in the Netherlands, Germany and
Belgium. A crucial factor in the success of this project was the
use of innovative information technologies, which made it possible
to learn from each other’s data without the data having to leave the
institution (a concept known as distributed learning). Another
important factor was the development of a dataset with semantic
interoperability (also known as ‘data with linguistic unity’ or ‘ma-
chine-readable data’), in which local terms are converted into con-
cepts from a well-defined ontology (e.g., NCI Thesaurus, SNOMED).
In such an approach, the ontology terms serve as a common inter-
face to the data at each institutional site, enabling a common ap-
proach to information retrieval and reasoning facilitated through
a semantic portal to the data. This semantic interoperability ap-
proach also allows one to add data from clinical trials to further
strengthen the data available to Rapid Learning.

The data collected in routine clinical care are often of lower
quality compared to data from clinical trials. Data captured in rou-
tine care are often incorrect, contradictory, missing and biased.

http://www.eurocat.info
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Although many problems are mitigated by the sheer volume of
data, it is important to include data quality improvement protocols
varying from simple logic (e.g. it is impossible to be 60 kg and have
a BMI of 32) to more probabilistic approaches (e.g. for a similar pa-
tient cohort the median value of the maximal standard uptake va-
lue from 18-FDG PET scans should be similar between two
institutes). A positive effect of such initiatives is that they give rise
to increasing coordination with respect to what data need to be
collected and how (i.e., disease-specific ‘umbrella’ protocols). The
end users of the knowledge, the provider and the patient, not only
need to gain insight into effects of various treatment options, but
also in uncertainties, conflicting data, and toxicities and other
treatment burden.

It should be noted that getting data in the proposed manner
does not mean that there is a need to capture more data, which
would be an unacceptable additional burden to often overloaded
professionals. Rather, the data that are already captured in routine
care and in clinical trials are combined and re-used. There are var-
ious prototypes to do this such as in the euroCAT project where a
fully automated, daily synchronisation of the clinical databases
into a semantically interoperable dataset takes place.
Knowledge

Machine learning is used to extract knowledge from great
amounts of data. In machine learning, models/algorithms are
developed that best describe the data but that can also make pre-
dictions for new, unseen data. Models trained on retrospective data
may be used to predict the outcomes (e.g., survival, quality of life,
toxicity, etc.) of various treatments on the basis of data from a new
patient. Obviously, it is crucial that such models are adequately
validated [21]; an unvalidated model is of very limited value. To
this end, a validation set should always be available, preferably
from a different institute than that from which the data were used
to create the model. Examples of radiotherapy models (on the basis
of both clinical trials and Rapid Learning) are available for non-
small cell lung, rectal and head-and-neck cancer on http://
www.predictcancer.org, breast cancer on http://research.nki.nl/
ibr/ and glioblastoma on http://www.eortc.be/tools/gbmcalcula-
tor/.
Application

In this phase, the knowledge generated by Rapid Learning is ap-
plied with the help of decision support systems (DSS). Typically,
these are tools and software applications that can be used to apply
Fig. 3. Example of a
knowledge-driven healthcare in practice. Examples include nomo-
grams (as in Fig. 3) [14,15,22–26] and websites such as those
named above, for radiotherapy models, which help predict the ex-
pected treatment outcome of radiotherapy when they are supplied
with the parameters specifically relevant to the clinical case.

Decision support systems are neither intended nor suited as a
replacement for the physician as a healthcare professional. They
are designed to support the physician and the patient in making
a more informed decision with respect to a particular treatment.
The use of computer models to support healthcare professionals
in their efforts is, of course, not new in radiation oncology. Phys-
ics-based computer models, with which doses can be better calcu-
lated than by hand, as well as radiobiology-based Normal Tissue
Complications Probability (NTCP) and Tumour Control Probability
(TCP) models to correlate the given dose with tumour control
and toxicity, are commonplace within radiotherapy [27,28]. For
example, geometrical models based on tumour volume alone have
shown additional value next to classical TNM classification as well
[29]. The new models emerging from Rapid Learning are a natural
extension of this to patient outcomes. However, a key difference is
that the Rapid Learning models are more ‘holistic’ and multifacto-
rial than the current physics- or radiobiology-based models, as
they also take patient, tumour and non-radiotherapy factors into
account [30]. For instance, a Rapid Learning model of radiation-in-
duced oesophagitis shows that the risk for this toxicity not only de-
pends on the dose to which the oesophagus is exposed, but also
greatly increases if chemotherapy is given concomitantly [31]. An-
other example is that the survival of non-metastatic unresectable
non-small cell lung cancer is better predicted by a multifactorial
model based on clinical and imaging variables, and even more
when blood biomarkers are included [31,32]. In both cases the
models outperform the prognostic value of TNM classification.
Evaluation

The underlying idea in Rapid Learning is that the application of
knowledge acquired from routine data leads to predictability of
treatment outcomes, meaning that these outcomes can be im-
proved in terms of both effectiveness (achieving the desired result)
and efficiency (the resources needed to achieve the result). Natu-
rally, this needs to be continually evaluated, focusing on the ques-
tion ‘Is the outcome of the treatment as predicted?’ Compared to
the consensus- and evidence based guideline knowledge that is
preferably constructed with (meta analysis of) robust experimental
data that are interpreted by multiple stakeholders including health
care economists and patient representatives, the prediction models
nomogram [22].

http://www.predictcancer.org
http://www.predictcancer.org
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may suffer from confounders and selection bias. For Rapid Learn-
ing, having high-quality data with respect to outcomes is crucial.
This implies the use of broadly accepted taxonomies such as RE-
CIST or pathological Complete Response for tumour response
[33], CTCAE for toxicity [34] and euroQoL for quality of life & util-
ities (which allow to calculate Quality Adjusted Life Year (QALY))
[35,36]. Naturally, keeping thorough records of treatment out-
comes is important not only for Rapid Learning, but also for initia-
tives such as the quality registration system for lung cancer
patients initiated by the Dutch Society for Radiotherapy and
Oncology.
Fig. 4. Complementary instead of contradictory approaches.
Discussion

Tailored cancer treatment is a necessity, to ensure not only that
the individual patient receives the treatment that best suits his or
her wishes, and to avoid under or overtreatment but also to opti-
mise resources, so that the right resources are being used for the
right patients in healthcare in a broader sense. However, tailored
cancer treatment is also a challenge: the great diversity of cancer
patients and treatments implies that it is by no means always clear
which choice leads to which treatment outcome. Especially in
cases where the treatment options under consideration have no
clear clinical advantage in the outcome, a shared decision-making
process can be employed in order to make the most of patient
preferences.

Tailored therapy is also necessary for radiotherapy. The radio-
sensitivity of tumours and normal tissues is often unknown, cer-
tainly not homogeneous within an individual patient, and even
less so between patients [37–40]. In addition, the range of treat-
ment options and thus the number of decisions that need to be
made within radiotherapy have risen sharply, largely due to tech-
nological innovations such as IMRT, VMAT, IGRT and particle ther-
apy as well as innovative combinations with systemic and targeted
treatments such as tyrosine inhibitors or monoclonal antibodies
(e.g., Cetuximab). Opting for a particular radiation treatment on
the basis of expected outcomes is therefore difficult, and the estab-
lished guidelines and literature provide only limited support in this
regard.

This article has discussed Rapid Learning as a means of support
when deciding on a tailored radiation treatment. In essence, Rapid
Learning involves reusing local, clinical, routine data to develop
knowledge in the form of models that can predict treatment out-
comes, and then clinically applying and carefully evaluating these
models by way of Decision Support Systems. The hypothesis is that
treatment outcomes obtained in the past can be used to predict fu-
ture results.

Earlier attempts to introduce so-called ‘expert systems’ had
mixed results. The proposed Rapid Learning methodology is differ-
ent from the earlier attempts to deploy expert systems in several
ways: it makes use of larger quantities of relevant data (e.g. the
clinical patient population), as steadily more clinical data become
available electronically in the clinical environment. This also en-
ables validation in one’s local practice which is a prerequisite for
any expert system to be accepted, similar to commissioning and
acceptance of treatment planning systems in radiotherapy. In con-
trast with expert systems, Rapid Learning employs quantitative
models in addition to qualitative models. Finally, the de facto cur-
rent expert system from ‘‘literature and guidelines based on clini-
cal trials’’ has limited application to personalised medicine. This
will drive the demand for more flexible and rapidly updated expert
systems such as proposed in this review.

The Rapid Learning approach seems to contradict the principles
of evidence-based medicine, in which treatment decisions are
based solely on results obtained from controlled clinical trials. In
fact it does not; both approaches are complementary (Fig. 4). This
is compounded by the fact that Rapid Learning is based on results
obtained from the less controlled setting of clinical practice. These
different environments yield different insights. Controlled clinical
trials primarily aim to identify small improvements in results be-
tween two treatments in a patient group that is as homogeneous
as possible. In contrast, Rapid Learning will reveal major differ-
ences in treatment outcomes that stem from the heterogeneity of
the patient group. It will be inferior in detecting minor differences
in treatments due to the lower quality of the data recorded in clin-
ical practice as compared to the same treatment in a clinical trial.
In addition, Rapid Learning can be seen as an alternative for situa-
tions in which there are insufficient evidence to make decisions in
line with the principles of evidence-based medicine. This is often
the case with technological innovations; for instance, when consid-
ering the use of new techniques (e.g., IMRT, protons) in the field of
radiotherapy [41].

Rapid Learning is new and still needs to prove its value as a sup-
plement to traditional, evidence-based approaches. There are sev-
eral developments that might help Rapid Learning change the way
scientific evidence is viewed in medicine: (a) Technological ad-
vances will be created by larger and higher quality databases that
link electronic health records with research databases, as well as
the advent of the Semantic Web with increased interoperability
and distributed learning approaches that enable learning from data
without the need for data to leave the hospital; (b) The develop-
ment by domain experts of qualitative criteria to evaluate evidence
coming from large databases and rapid learning approaches; (c)
The increased pressure and possible reimbursement from health-
care payers to use Decision Support Systems, especially for high
cost treatments such as proton therapy; and (d) The development
of ‘‘clinical grade’’ and certified commercial decision support
systems.

Radiotherapy seems to be the ideal setting to study the value of
Rapid Learning, given the field’s high degree of computerisation, as
well as its long use and acceptance of predictive models. Within
clinical radiotherapy, models and planning systems should become
available that make it possible to not only plan on the basis of
physical dose and Dose Volume Histograms parameters, but also
to explain the relationship with the expected clinical outcomes
in individual patients. Translating knowledge to an individual pa-
tient is challenging, particularly in so-called preference-sensitive
situations where there are trade-offs between options with more
or less equally desirable outcomes, but in which different individ-
uals may value differently e.g. in terms of side effects. As access to
health-related information improves, patients have an increased
desire to be in charge of their own life and health. Despite invest-
ment in efforts to improve the skills of clinicians, patients continue
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to report low levels of involvement [42]. There is indeed evidence
level 1 from a Cochrane systematic review evaluating 86 studies
involving 20,209 participants included in published randomised
controlled trials demonstrating that decision aids increase people’s
involvement, support informed values-based choices in patient-
practitioner communication, and improve knowledge and realistic
perception of outcomes. We therefore believe the next step will be
to integrate, whenever possible, Shared Decision Making ap-
proaches (see for example www.treatmentchoice.info;
www.optiongrid.org) to include the patient perspective in the
choice of best treatment [26].
Conflict of interest

We are not aware of any actual or potential conflicts of interest.

Acknowledgements

We would like to acknowledge the financial support of the EU
IMI programme (QuIC-ConCePT), the CTMM framework (AIRFORCE
project), the EU 6th and 7th framework programme (Metoxia, Art-
force, Eureca), Interreg (www.eurocat.info) and the Dutch Cancer
Society (KWF UM 2011-5020, KWF UM 2009-4454).

References

[1] Lambin P, Petit SF, Aerts HJ, van Elmpt WJ, Oberije CJ, Starmans MH, et al. From
population to voxel-based radiotherapy: exploiting intra-tumour and intra-
organ heterogeneity for advanced treatment of non-small cell lung cancer.
Radiother Oncol 2009;2010:145–52.

[2] Koboldt DC, Fulton RS, McLellan MD. Comprehensive molecular portraits of
human breast tumours. Nature 2012;490(7418):61–70.

[3] Seigneuric R, Starmans MH, Fung G, Krishnapuram B, Nuyten DS, van Erk A,
et al. Impact of supervised gene signatures of early hypoxia on patient survival.
Radiother Oncol 2007;83:374–82.

[4] Starmans MH, Chu KC, Haider S, Nguyen F, Seigneuric R, Magagnin MG, et al.
The prognostic value of temporal in vitro and in vivo derived hypoxia gene-
expression signatures in breast cancer. Radiother Oncol 2012;102:436–43.

[5] Starmans MH, Fung G, Steck H, Wouters BG, Lambin P, et al. A simple but
highly effective approach to evaluate the prognostic performance of gene
expression signatures. PLoS ONE 2011;6:e28320.

[6] Starmans MH, Lieuwes NG, Span PN, Haider S, Dubois L, Nguyen F, et al.
Independent and functional validation of a multi-tumour-type proliferation
signature. Br. J. Cancer 2012;107:508–15.

[7] Starmans MH, Zips D, Wouters BG, Baumann M, Lambin P. The use of a
comprehensive tumour xenograft dataset to validate gene signatures relevant
for radiation response. Radiother Oncol 2009;92:417–22.

[8] Voets AM, Oberije C, Struijk RB, Reymen B, De Ruyck K, Thierens H, et al. No
association between TGF-beta1 polymorphisms and radiation-induced lung
toxicity in a European cohort of lung cancer patients. Radiother Oncol
2012;105:296–8.

[9] Movsas B, Moughan J, Owen J, Coia LR, Zelefsky MJ, Hanks G, et al. Who enrolls
onto clinical oncology trials? A radiation patterns of care study analysis. Int J
Radiat Oncol Biol Phys 2007;68:1145–50.

[10] Grand MM, O’Brien PC. Obstacles to participation in randomised cancer clinical
trials: a systematic review of the literature. J Med Imag Radiat Oncol
2012;56:31–9.

[11] Murthy VH, Krumholz HM, Gross CP. Participation in cancer clinical trials:
race-, sex-, and age-based disparities. JAMA 2004;291:2720–6.

[12] Bastian H, Glasziou P, Chalmers I. Seventy-five trials and eleven systematic
reviews a day: how will we ever keep up? PLoS Med 2010;7:e1000326.

[13] Abernethy AP, Etheredge LM, Ganz PA, Wallace P, German RR, Neti C, et al.
Rapid-learning system for cancer care. J Clin Oncol 2010;28:4268–74.

[14] Dehing-Oberije C, Yu S, De Ruysscher D, Meersschout S, Van Beek K, Lievens Y,
et al. Development and external validation of prognostic model for 2-year
survival of non-small-cell lung cancer patients treated with
chemoradiotherapy. Int J Radiat Oncol Biol Phys 2009;74:355–62.

[15] Egelmeer AG, Velazquez ER, de Jong JM, Oberije C, Geussens Y, Nuyts S, et al.
Development and validation of a nomogram for prediction of survival and
local control in laryngeal carcinoma patients treated with radiotherapy alone:
a cohort study based on 994 patients. Radiother Oncol 2011;100:108–15.

[16] Jimenez MF, van Baardwijk A, Aerts HJ, De Ruysscher D, Novoa NM, Varela G,
et al. Effectiveness of surgery and individualized high-dose hyperfractionated
accelerated radiotherapy on survival in clinical stage I non-small cell lung
cancer. A propensity score matched analysis. Radiother Oncol 2010;97:413–7.

[17] Roelofs E, Engelsman M, Rasch C, Persoon L, Qamhiyeh S, de Ruysscher D, et al.
Results of a multicentric in silico clinical trial (ROCOCO): comparing
radiotherapy with photons and protons for non-small cell lung cancer. J
Oncol 2012;7:165–76.

[18] Lambin P, Rios-Velazquez E, Leijenaar R, Carvalho S, van Stiphout RG, Granton
P, et al. Radiomics: extracting more information from medical images using
advanced feature analysis. Eur J Cancer 2012;48:441–6.

[19] Roelofs E, Persoon L, Nijsten S, Wiessler W, Dekker A, Lambin P. Benefits of a
clinical data warehouse with data mining tools to collect data for a
radiotherapy trial. Radiother Oncol 2013. doi:pii: S0167-8140(12)00444-6.

[20] van Elmpt W, Nijsten S, Mijnheer B, Dekker A, Lambin P. The next step in
patient-specific QA: 3D dose verification of conformal and intensity-
modulated RT based on EPID dosimetry and Monte Carlo dose calculations.
Radiother Oncol 2008;86:86–92.

[21] Steyerberg EW, Vickers AJ, Cook NR, Gerds T, Gonen M, Obuchowski N, et al.
Assessing the performance of prediction models: a framework for traditional
and novel measures. Epidemiology 2010;21:128–38.

[22] Valentini V, van Stiphout RG, Lammering G, Gambacorta MA, Barba MC,
Bebenek M, et al. Nomograms for predicting local recurrence, distant
metastases, and overall survival for patients with locally advanced rectal
cancer on the basis of European randomized clinical trials. J Clin Oncol
2011;29:3163–72.

[23] De Ruysscher D, Dehing C, Yu S, Wanders R, Ollers M, Dingemans AM, et al.
Dyspnea evolution after high-dose radiotherapy in patients with non-small
cell lung cancer. Radiother Oncol 2009;91:353–9.

[24] De Ruysscher D, Houben A, Aerts HJ, Dehing C, Wanders R, Ollers M, et al.
Increased (18)F-deoxyglucose uptake in the lung during the first weeks of
radiotherapy is correlated with subsequent radiation-induced lung toxicity
(RILT): a prospective pilot study. Radiother Oncol 2009;91:415–20.

[25] Dehing-Oberije C, De Ruysscher D, van Baardwijk A, Yu S, Rao B, Lambin P,
et al. The importance of patient characteristics for the prediction of radiation-
induced lung toxicity. Radiother Oncol 2009;91:421–6.

[26] Stacey D, Bennett CL, Barry MJ, Col NF, Eden KB, Holmes-Rovner M, et al.
Decision aids for people facing health treatment or screening decisions.
Cochrane Database Syst Rev 2011:CD001431.

[27] Bentzen SM, Dorr W, Gahbauer R, Howell RW, Joiner MC, Jones B, et al.
Bioeffect modeling and equieffective dose concepts in radiation oncology–
terminology, quantities and units. Radiother Oncol 2012;105:266–8.

[28] De Leeuw AA, Van de Kamer JB, Moerland MA, Philippens ME, Jurgenliemk-
Schulz IM. The effect of alternative biological modelling parameters (alpha/
beta and half time of repair T(1/2)) on reported EQD2 values in the treatment
of advanced cervical cancer. Radiother Oncol 2011;101:337–42.

[29] Guo R, Sun Y, Yu XL, et al. Is primary tumor volume still a prognostic factor in
intensity modulated radiation therapy for nasopharyngeal carcinoma?
Radiother Oncol 2012;104:294–9.

[30] Lambin P, van Stiphout RG, Starmans MH, Rios-Velazquez E, Nalbantov G,
Aerts HJ, et al. Predicting outcomes in radiation oncology – multifactorial
decision support systems. Nature Rev Clin Oncol 2013;10:27–40.

[31] Dehing-Oberije C, De Ruysscher D, Petit S, Van Meerbeeck J, Vandecasteele K,
De Neve W, et al. Development, external validation and clinical usefulness of a
practical prediction model for radiation-induced dysphagia in lung cancer
patients. Radiother Oncol 2010;97:455–61.

[32] Dehing-Oberije C, Aerts H, Yu S, De Ruysscher D, Menheere P, Hilvo M, et al.
Development and validation of a prognostic model using blood biomarker
information for prediction of survival of non-small-cell lung cancer patients
treated with combined chemotherapy and radiation or radiotherapy alone
(NCT00181519, NCT00573040, and NCT00572325). Int J Radiat Oncol Biol Phys
2011;81:360–8.

[33] Eisenhauer EA, Therasse P, Bogaerts J, Schwartz LH, Sargent D, Ford R, et al.
New response evaluation criteria in solid tumours: revised RECIST guideline
(version 1.1). Eur J Cancer 2009;45:228–47.

[34] Trotti A, Colevas AD, Setser A, Rusch V, Jaques D, Budach V, et al. CTCAE v3.0:
development of a comprehensive grading system for the adverse effects of
cancer treatment. Semin Radiat Oncol 2003;13:176–81.

[35] Grutters JP, Kessels AG, Pijls-Johannesma M, De Ruysscher D, Joore MA,
Lambin P. Comparison of the effectiveness of radiotherapy with photons,
protons and carbon-ions for non-small cell lung cancer: a meta-analysis.
Radiother Oncol 2010;95:32–40.

[36] Peeters A, Grutters JP, Pijls-Johannesma M, Reimoser S, De Ruysscher D,
Severens JL, et al. How costly is particle therapy? Cost analysis of external
beam radiotherapy with carbon-ions, protons and photons. Radiother Oncol
2010;95:45–53.

[37] Aerts HJ, Bussink J, Oyen WJ, van Elmpt W, Folgering AM, Emans D, et al.
Identification of residual metabolic-active areas within NSCLC tumours using a
pre-radiotherapy FDG-PET-CT scan: a prospective validation. Lung Cancer
2012;75:73–6.

[38] van Loon J, Janssen MH, Ollers M, Aerts HJ, Dubois L, Hochstenbag M, et al. PET
imaging of hypoxia using [18F]HX4: a phase I trial. Eur J Nucl Med Mol Imag
2010;37:1663–8.

[39] Mortensen LS, Johansen J, Kallehauge J, Primdahl H, Busk M, Lassen P, et al.
FAZA PET/CT hypoxia imaging in patients with squamous cell carcinoma of the
head and neck treated with radiotherapy: results from the DAHANCA 24 trial.
Radiother Oncol 2012;105:14–20.

[40] Zips D, Zophel K, Abolmaali N, Perrin R, Abramyuk A, Haase R, et al.
Exploratory prospective trial of hypoxia-specific PET imaging during
radiochemotherapy in patients with locally advanced head- and-neck
cancer. Radiother Oncol 2012;105:21–8.

http://www.treatmentchoice.info
http://www.optiongrid.org
http://www.eurocat.info
http://refhub.elsevier.com/S0167-8140(13)00339-3/h0005
http://refhub.elsevier.com/S0167-8140(13)00339-3/h0005
http://refhub.elsevier.com/S0167-8140(13)00339-3/h0005
http://refhub.elsevier.com/S0167-8140(13)00339-3/h0005
http://refhub.elsevier.com/S0167-8140(13)00339-3/h0190
http://refhub.elsevier.com/S0167-8140(13)00339-3/h0190
http://refhub.elsevier.com/S0167-8140(13)00339-3/h0010
http://refhub.elsevier.com/S0167-8140(13)00339-3/h0010
http://refhub.elsevier.com/S0167-8140(13)00339-3/h0010
http://refhub.elsevier.com/S0167-8140(13)00339-3/h0015
http://refhub.elsevier.com/S0167-8140(13)00339-3/h0015
http://refhub.elsevier.com/S0167-8140(13)00339-3/h0015
http://refhub.elsevier.com/S0167-8140(13)00339-3/h0020
http://refhub.elsevier.com/S0167-8140(13)00339-3/h0020
http://refhub.elsevier.com/S0167-8140(13)00339-3/h0020
http://refhub.elsevier.com/S0167-8140(13)00339-3/h0025
http://refhub.elsevier.com/S0167-8140(13)00339-3/h0025
http://refhub.elsevier.com/S0167-8140(13)00339-3/h0025
http://refhub.elsevier.com/S0167-8140(13)00339-3/h0030
http://refhub.elsevier.com/S0167-8140(13)00339-3/h0030
http://refhub.elsevier.com/S0167-8140(13)00339-3/h0030
http://refhub.elsevier.com/S0167-8140(13)00339-3/h0035
http://refhub.elsevier.com/S0167-8140(13)00339-3/h0035
http://refhub.elsevier.com/S0167-8140(13)00339-3/h0035
http://refhub.elsevier.com/S0167-8140(13)00339-3/h0035
http://refhub.elsevier.com/S0167-8140(13)00339-3/h0040
http://refhub.elsevier.com/S0167-8140(13)00339-3/h0040
http://refhub.elsevier.com/S0167-8140(13)00339-3/h0040
http://refhub.elsevier.com/S0167-8140(13)00339-3/h0045
http://refhub.elsevier.com/S0167-8140(13)00339-3/h0045
http://refhub.elsevier.com/S0167-8140(13)00339-3/h0045
http://refhub.elsevier.com/S0167-8140(13)00339-3/h0195
http://refhub.elsevier.com/S0167-8140(13)00339-3/h0195
http://refhub.elsevier.com/S0167-8140(13)00339-3/h0050
http://refhub.elsevier.com/S0167-8140(13)00339-3/h0050
http://refhub.elsevier.com/S0167-8140(13)00339-3/h0055
http://refhub.elsevier.com/S0167-8140(13)00339-3/h0055
http://refhub.elsevier.com/S0167-8140(13)00339-3/h0060
http://refhub.elsevier.com/S0167-8140(13)00339-3/h0060
http://refhub.elsevier.com/S0167-8140(13)00339-3/h0060
http://refhub.elsevier.com/S0167-8140(13)00339-3/h0060
http://refhub.elsevier.com/S0167-8140(13)00339-3/h0065
http://refhub.elsevier.com/S0167-8140(13)00339-3/h0065
http://refhub.elsevier.com/S0167-8140(13)00339-3/h0065
http://refhub.elsevier.com/S0167-8140(13)00339-3/h0065
http://refhub.elsevier.com/S0167-8140(13)00339-3/h0070
http://refhub.elsevier.com/S0167-8140(13)00339-3/h0070
http://refhub.elsevier.com/S0167-8140(13)00339-3/h0070
http://refhub.elsevier.com/S0167-8140(13)00339-3/h0070
http://refhub.elsevier.com/S0167-8140(13)00339-3/h0075
http://refhub.elsevier.com/S0167-8140(13)00339-3/h0075
http://refhub.elsevier.com/S0167-8140(13)00339-3/h0075
http://refhub.elsevier.com/S0167-8140(13)00339-3/h0075
http://refhub.elsevier.com/S0167-8140(13)00339-3/h0080
http://refhub.elsevier.com/S0167-8140(13)00339-3/h0080
http://refhub.elsevier.com/S0167-8140(13)00339-3/h0080
http://refhub.elsevier.com/S0167-8140(13)00339-3/h0200
http://refhub.elsevier.com/S0167-8140(13)00339-3/h0200
http://refhub.elsevier.com/S0167-8140(13)00339-3/h0200
http://refhub.elsevier.com/S0167-8140(13)00339-3/h0085
http://refhub.elsevier.com/S0167-8140(13)00339-3/h0085
http://refhub.elsevier.com/S0167-8140(13)00339-3/h0085
http://refhub.elsevier.com/S0167-8140(13)00339-3/h0085
http://refhub.elsevier.com/S0167-8140(13)00339-3/h0090
http://refhub.elsevier.com/S0167-8140(13)00339-3/h0090
http://refhub.elsevier.com/S0167-8140(13)00339-3/h0090
http://refhub.elsevier.com/S0167-8140(13)00339-3/h0095
http://refhub.elsevier.com/S0167-8140(13)00339-3/h0095
http://refhub.elsevier.com/S0167-8140(13)00339-3/h0095
http://refhub.elsevier.com/S0167-8140(13)00339-3/h0095
http://refhub.elsevier.com/S0167-8140(13)00339-3/h0095
http://refhub.elsevier.com/S0167-8140(13)00339-3/h0100
http://refhub.elsevier.com/S0167-8140(13)00339-3/h0100
http://refhub.elsevier.com/S0167-8140(13)00339-3/h0100
http://refhub.elsevier.com/S0167-8140(13)00339-3/h0105
http://refhub.elsevier.com/S0167-8140(13)00339-3/h0105
http://refhub.elsevier.com/S0167-8140(13)00339-3/h0105
http://refhub.elsevier.com/S0167-8140(13)00339-3/h0105
http://refhub.elsevier.com/S0167-8140(13)00339-3/h0110
http://refhub.elsevier.com/S0167-8140(13)00339-3/h0110
http://refhub.elsevier.com/S0167-8140(13)00339-3/h0110
http://refhub.elsevier.com/S0167-8140(13)00339-3/h0205
http://refhub.elsevier.com/S0167-8140(13)00339-3/h0205
http://refhub.elsevier.com/S0167-8140(13)00339-3/h0205
http://refhub.elsevier.com/S0167-8140(13)00339-3/h0115
http://refhub.elsevier.com/S0167-8140(13)00339-3/h0115
http://refhub.elsevier.com/S0167-8140(13)00339-3/h0115
http://refhub.elsevier.com/S0167-8140(13)00339-3/h0120
http://refhub.elsevier.com/S0167-8140(13)00339-3/h0120
http://refhub.elsevier.com/S0167-8140(13)00339-3/h0120
http://refhub.elsevier.com/S0167-8140(13)00339-3/h0120
http://refhub.elsevier.com/S0167-8140(13)00339-3/h0125
http://refhub.elsevier.com/S0167-8140(13)00339-3/h0125
http://refhub.elsevier.com/S0167-8140(13)00339-3/h0125
http://refhub.elsevier.com/S0167-8140(13)00339-3/h0130
http://refhub.elsevier.com/S0167-8140(13)00339-3/h0130
http://refhub.elsevier.com/S0167-8140(13)00339-3/h0130
http://refhub.elsevier.com/S0167-8140(13)00339-3/h0135
http://refhub.elsevier.com/S0167-8140(13)00339-3/h0135
http://refhub.elsevier.com/S0167-8140(13)00339-3/h0135
http://refhub.elsevier.com/S0167-8140(13)00339-3/h0135
http://refhub.elsevier.com/S0167-8140(13)00339-3/h0140
http://refhub.elsevier.com/S0167-8140(13)00339-3/h0140
http://refhub.elsevier.com/S0167-8140(13)00339-3/h0140
http://refhub.elsevier.com/S0167-8140(13)00339-3/h0140
http://refhub.elsevier.com/S0167-8140(13)00339-3/h0140
http://refhub.elsevier.com/S0167-8140(13)00339-3/h0140
http://refhub.elsevier.com/S0167-8140(13)00339-3/h0145
http://refhub.elsevier.com/S0167-8140(13)00339-3/h0145
http://refhub.elsevier.com/S0167-8140(13)00339-3/h0145
http://refhub.elsevier.com/S0167-8140(13)00339-3/h0150
http://refhub.elsevier.com/S0167-8140(13)00339-3/h0150
http://refhub.elsevier.com/S0167-8140(13)00339-3/h0150
http://refhub.elsevier.com/S0167-8140(13)00339-3/h0155
http://refhub.elsevier.com/S0167-8140(13)00339-3/h0155
http://refhub.elsevier.com/S0167-8140(13)00339-3/h0155
http://refhub.elsevier.com/S0167-8140(13)00339-3/h0155
http://refhub.elsevier.com/S0167-8140(13)00339-3/h0160
http://refhub.elsevier.com/S0167-8140(13)00339-3/h0160
http://refhub.elsevier.com/S0167-8140(13)00339-3/h0160
http://refhub.elsevier.com/S0167-8140(13)00339-3/h0160
http://refhub.elsevier.com/S0167-8140(13)00339-3/h0165
http://refhub.elsevier.com/S0167-8140(13)00339-3/h0165
http://refhub.elsevier.com/S0167-8140(13)00339-3/h0165
http://refhub.elsevier.com/S0167-8140(13)00339-3/h0165
http://refhub.elsevier.com/S0167-8140(13)00339-3/h0170
http://refhub.elsevier.com/S0167-8140(13)00339-3/h0170
http://refhub.elsevier.com/S0167-8140(13)00339-3/h0170
http://refhub.elsevier.com/S0167-8140(13)00339-3/h0175
http://refhub.elsevier.com/S0167-8140(13)00339-3/h0175
http://refhub.elsevier.com/S0167-8140(13)00339-3/h0175
http://refhub.elsevier.com/S0167-8140(13)00339-3/h0175
http://refhub.elsevier.com/S0167-8140(13)00339-3/h0180
http://refhub.elsevier.com/S0167-8140(13)00339-3/h0180
http://refhub.elsevier.com/S0167-8140(13)00339-3/h0180
http://refhub.elsevier.com/S0167-8140(13)00339-3/h0180


164 Rapid Learning healthcare in oncology
[41] Langendijk JA, Lambin P, De Ruysscher D, Widder J, Bos M, Verheij M. Selection
of patients for radiotherapy with protons aiming at reduction of side effects:
the model-based approach. Radiother Oncol 2013.

[42] Stiggelbout AM, Van der Weijden T, De Wit MP, Frosch D, Legare F, Montori
VM, et al. Shared decision making: really putting patients at the centre of
healthcare. BMJ 2012;344:e256.
[43] Deasy JO, Bentzen SM, Jackson A, Ten Haken RK, Yorke ED, Constine LS, et al.
Improving normal tissue complication probability models: the need to adopt a
‘‘data-pooling’’ culture. Int J Radiat Oncol Biol Phys. 2010;76(3 Suppl):S151–4.

http://refhub.elsevier.com/S0167-8140(13)00339-3/h0210
http://refhub.elsevier.com/S0167-8140(13)00339-3/h0210
http://refhub.elsevier.com/S0167-8140(13)00339-3/h0210
http://refhub.elsevier.com/S0167-8140(13)00339-3/h0185
http://refhub.elsevier.com/S0167-8140(13)00339-3/h0185
http://refhub.elsevier.com/S0167-8140(13)00339-3/h0185
http://refhub.elsevier.com/S0167-8140(13)00339-3/h0215
http://refhub.elsevier.com/S0167-8140(13)00339-3/h0215
http://refhub.elsevier.com/S0167-8140(13)00339-3/h0215

	‘Rapid Learning health care in oncology’ – An approach towards decision support systems enabling customised radiotherapy’
	Methods and results
	Data
	Knowledge
	Application
	Evaluation

	Discussion
	Conflict of interest
	Acknowledgements
	References


