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Background and purpose: Radiomics provides opportunities to quantify the tumor phenotype
non-invasively by applying a large number of quantitative imaging features. This study evaluates
computed-tomography (CT) radiomic features for their capability to predict distant metastasis (DM)
for lung adenocarcinoma patients.
Material and methods: We included two datasets: 98 patients for discovery and 84 for validation. The
phenotype of the primary tumor was quantified on pre-treatment CT-scans using 635 radiomic features.
Univariate and multivariate analysis was performed to evaluate radiomics performance using the concor-
dance index (CI).
Results: Thirty-five radiomic features were found to be prognostic (CI > 0.60, FDR < 5%) for DM and
twelve for survival. It is noteworthy that tumor volume was only moderately prognostic for DM
(CI = 0.55, p-value = 2.77 � 10�5) in the discovery cohort. A radiomic-signature had strong power for
predicting DM in the independent validation dataset (CI = 0.61, p-value = 1.79 � 10�17). Adding this
radiomic-signature to a clinical model resulted in a significant improvement of predicting DM in the
validation dataset (p-value = 1.56 � 10�11).
Conclusions: Although only basic metrics are routinely quantified, this study shows that radiomic
features capturing detailed information of the tumor phenotype can be used as a prognostic biomarker
for clinically-relevant factors such as DM. Moreover, the radiomic-signature provided additional informa-
tion to clinical data.

� 2015 Elsevier Ireland Ltd. All rights reserved. Radiotherapy and Oncology 114 (2015) 345–350
Lung cancer is the most deadly cancer worldwide for both men
and women [1]. Non-small cell lung cancer (NSCLC) is the most
common type of lung cancer (85–90% of all lung cancers) and ade-
nocarcinoma is the most common subtype (about 40% of all lung
cancers) of NSCLC. Patients with locally advanced (stage II–III) lung
adenocarcinomas are typically treated with combined modality
therapy including chemotherapy with local therapy including
radiation therapy and/or surgery, but overall survival remains
low due to a high risk of local recurrence and distant metastasis
(DM) after treatment. Despite the use of concurrent chemotherapy
with local therapy, the incidence of DM after combined modality
therapy is as high as 30–40% in prospective trials [2–4].
However, large randomized trials studying consolidation
chemotherapy after concurrent chemotherapy and radiation
therapy have not shown improvement in overall survival with
additional chemotherapy [5,6] likely because there was no selec-
tion of patients at the highest risk of DM. Therefore, developing
better biomarkers to predict patients at the highest risk of DM
may help identify sub-groups who benefit from intensification of
systemic therapy and is crucial for improving outcomes.

Due to recent technological advances in medical imaging it is
possible to capture tumor phenotypic characteristics
non-invasively. The most widely used imaging modality is
Computed-Tomography (CT), which can quantify tissue density.
In lung cancer, CT imaging is routinely used for patient manage-
ment, including diagnosis, radiation treatment planning and
surveillance.

http://crossmark.crossref.org/dialog/?doi=10.1016/j.radonc.2015.02.015&domain=pdf
http://dx.doi.org/10.1016/j.radonc.2015.02.015
mailto:tcoroller@lroc.harvard.edu
mailto:Hugo_Aerts@dfci.harvard.edu
mailto:Hugo_Aerts@dfci.harvard.edu
http://dx.doi.org/10.1016/j.radonc.2015.02.015
http://www.sciencedirect.com/science/journal/01678140
http://www.thegreenjournal.com


346 Radiomic signature predicts distant metastasis in lung adenocarcinoma
Tumor phenotypic differences (e.g., shapes irregularity, infiltra-
tion, heterogeneity or necrosis) can be quantified in CT images
using radiomic features. Radiomics [7–9] aims to provide a com-
prehensive quantification of the tumor phenotype by analyzing
robustly [10–12] a large set of quantitative data characterization
algorithms. Biomarkers based on quantitative features have
demonstrated strong prognostic performance across a range of
cancer types and investigators have reported that these features
are associated with clinical outcomes and underlying genomic pat-
terns [13–26]. Radiomics has significant clinical potential, as it can
be applied to routinely acquired medical imaging data at low costs.

In this manuscript we present a radiomic analysis to identify
biomarkers of DM in patients treated with chemoradiation
(chemoRT) for locally advanced lung adenocarcinoma. In a discov-
ery dataset, we extracted 635 radiomics features to identify the
optimal features for predicting metastasis. Only a limited number
of features with high performance for predicting DM were tested
in the independent validation dataset. We evaluated the ability
of radiomic features to predict DM or overall survival, and how
these features compare with basic metrics (e.g., volume, diameter)
as prognostic factors [27–30].

Materials and methods

Patient characteristics

This study is an Institutional Review Board-approved analysis of
CT for treatment simulation from North-American NSCLC patients
receiving chemoRT at our institution from 2001 to 2013. We limited
the patient population to pathologically-confirmed lung adenocar-
cinoma with locally advanced disease (overall stage II–III) [30].
Patients with surgery or chemotherapy before the scheduled radia-
tion therapy planning CT date were excluded from the study.
Patients treated before July 2009 were included in the discovery
Dataset1 (n = 98), and after July 2009 in an independent validation
Dataset2 (n = 84). In total 182 patients were included in our analysis.

Clinical endpoints

Patients were followed up every three to 6 months after treat-
ment, and surveillance chest CT scans with contrast (unless
patient’s contraindication, e.g., allergy or renal dysfunction) were
B) ExtraA) CT images

Fig. 1. (A) Differences between lung primary tumors with a same histology are apparen
primary tumors contain critical information that can be used to predict outcomes or asse
(m = 635) is used to capture the tumor phenotype. It includes 1| intensity, 2| shape and 3
features were investigated. (C) The final step is to link radiomic information to clinical
performed to assess treatment response or tumor progression
based on US national guidelines (NCCN). The primary endpoint of
this study was distant metastasis (DM), which was defined as pro-
gression of disease to other organs as assessed in surveillance
scans, and time to DM was defined as time from start of radiation
to date of DM or censoring (date of last scan). Overall survival was
analyzed as a secondary endpoint, and was defined as the time
between the start of radiation treatment and last day of follow
up or date of death.

Clinical variables

The conventional clinical prognostic factors (CPFs) used for this
study included tumor grade (1-Well differentiated, 2-Moderately
differentiated, 3-Poorly differentiated and 4-Not available),
Eastern Cooperative Oncology Group (ECOG) performance status
(PS) [31], TNM stage per the American Joint Committee on
Cancer (AJCC) staging system (7th edition) [30]; CT-based mea-
surements commonly utilized in the clinic (e.g., tumor volume
and maximal tumor diameter measured on single axial slice), and
treatment characteristics. Sub-group analyses of clinical variables
were performed (e.g., overall stage II vs. IIIA vs. IIIB) and can be
found in Table S1 (Supplement II.1).
CT acquisition and segmentation

Planning CT was performed according to standard clinical scan-
ning protocols at our institution with a GE ‘‘LightSpeed’’ CT scanner
(GE Medical System, Milwaukee, WI, USA). The most common pixel
spacing was (0.93 mm, 0.93 mm, 2.5 mm) for CT. The primary lung
tumor was delineated manually on Eclipse (Varian Medical System,
Palo Alto, CA, USA). It was first contoured in the abdomen window
to identify the boundaries with the chest wall or other soft tissues,
then in the lung window to capture the maximum extent in the
lung parenchyma. All contours were reviewed by an experienced
radiation oncologist (R.H.M).

Radiomic feature extraction

Radiomic features have the capacity to capture tumor pheno-
type differences by examining a large set of quantitative features
(Fig. 1). The feature extraction was performed in MATLAB 2013b
C) Analysis
Radiomic features
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(Mathworks, Natick, MA, USA) using an in-house developed tool-
box running on the Computational Environment for Radiotherapy
Research (CERR) [32]. DICOMs files (CT images + tumor contours)
were imported into CERR to extract the radiomic features. The
radiomic feature set included is described in detail in the
Supplement I.
Feature selection

Feature selection for the radiomic signature was performed
with the minimum redundancy maximum relevance (mRMR) algo-
rithm implemented in the mRMRe [33] package version 2.0.4 in R.
The mRMR algorithm is an entropy based feature selection method,
which starts by calculating the mutual information (MI) between a
set of features and an outcome variable. MRMR ranks the input
features by maximizing the MI with respect to outcome and
minimizing the average MI of higher ranked features. Here, sur-
vival objects as implemented in R with ‘‘Survcomp’’ package [34]
were used as outcome to select complementary features with
respect to DM or survival.

Among available clinical covariates, those with p < 0.1 on uni-
variate analysis of DM using a Log-Rank test were included into a
multivariate clinical prognostic model.
Data analysis

Univariate and multivariate analyses were performed for this
study. All analysis were performed on Dataset1, leaving Dataset2
as an independent validation cohort for evaluating the radiomic
signature.

Statistical analysis was conducted using the survcomp [34] pack-
age version 1.12 and rmeta [35] package version 2.16 in
Bioconductor [36]. Prognostic performances were evaluated by the
concordance index [37] (CI), which is the probability that among
two randomly drawn samples, the sample with the higher risk value
has also the higher chance of experiencing an event (e.g., death or
development of DM). CIs were either directly computed for con-
tinuous variables or on the predictions of a univariate Cox model
with clinical categorical variables. Kaplan–Meier and Log-Rank
statistics were used to analyze the univariate discrimination of sur-
vival and DM groups by imaging features and clinical covariates. To
build the multivariate radiomic signature for DM, Cox regression
models were trained on Dataset1 for selected prognostic variables
and the predictions by these models were validated on Dataset2.
Features were incrementally added to the model according to the
relevance rank calculated by mRMR [33]. Intermediate models were
Table 1
Patient characteristics and outcomes are reported for each datasets. For categorical variable
between dataset 1 and 2 was computed using Chi Square (categorical variables) or Wilcox

Overall dataset (n =
Median (range)

Age [years] 64 (35–93)
Gender [F/M] 114(62.6%)/68(37.4
Overall stage [IIA/IIB/IIIA/IIIB] 6/3/101/72
T-stage [T1a/T1b/T2a/T2b/T3/T4] 19/23/50/19/39/32
N-stage [N0/N1/N2/N3] 13/17/97/55
Performance status [0/1/2/3] 81/91/8/2
Tumor grade [1/2/3/X] 4/28/92/58
Follow-up [months] 23.7 (1.8–119.2)
Survival [months] 24.7 (1.8–119.2)
Time to distant metastasis [months] 13.4 (0.3–117.5)
Distant metastasis [No/Yes] 69(37.9%)/113(62.1
Radiation dose delivered 654/ 6 60/ 6 66/ 6 66 [Gray] 60(32.97%)/

30(16.48%)/
70(38.45%)/
22(12.1%)

Chemotherapy sequence [concurrent/adjuvant/induction] 175/79/28
tested by repeated random sub-sampling cross validation with
1,000 iterations on Dataset1. Once the mean CI of the growing model
dropped, the corresponding feature set was retained selected as the
final model. Only this selected model was and validated on Dataset2.
Significance of CIs was assessed by bootstrapping subsamples of size
100 with 100 repetitions for (A) true survival data and (B) random
permutations of survival data, and comparing the empirical distri-
butions of (A) and (B) by a one-sided Wilcoxon signed rank test.
The same procedure was used to assess if a CI was higher than anoth-
er CI. To correct for multiple comparisons, we additionally adjusted
P-values by the false-discovery-rate (FDR) procedure according to
Benjamini and Hochberg [38]. All statistical analysis was performed
using the R software [39] version 3.0.2.

Results

The majority of all patients were female (62.6%) and the median
age at start of treatment was 64 years (range: 35–93 years). The
median follow-up time was 23.7 months (range: 1.8–
119.2 months) and the median survival time was 24.7 months
(range: 1.8–119.2 months). The median time to distant metastasis
(DM) was 13.4 months (range: 0.3–117.5 months). Patient charac-
teristics, clinical outcomes are shown in Table 1.

Time to DM was similar between Dataset1 and Dataset2
(p-value < 0.36), as for the numbers of DM (p-value < 0.45).
However, survival (p-value < 0.005) and follow-up times
(p-value < 0.007) were significantly different in Dataset1.

We investigated the association of radiomics data with DM and
overall survival. In Fig. 2 the association of the imaging features with
DM and survival in the discovery Dataset1 is shown. Of the complete
radiomic feature set (m = 635), a total of 520 (81.88%) and 582
(91.65%) features were significant from random (FDR < 5%) for DM
and survival, respectively. A total of 445 radiomic features were
significant for both DM and survival. A high linear relationship
was observed (R2 = 0.92, p-value < 2.7 � 10�243), for the features
significant for both DM and survival. It is noteworthy that LoG
features had the highest performance compared to the other feature
groups.

Among all features, thirty-five radiomics features were strongly
prognostic (CI > 0.60 and FDR < 5%) for DM (Table S2 in the
Supplement II.3). Twelve features were found prognostic for
survival. Specific details on statistic values of these features can
be found in Table S3 in Supplement II.3. Between these two top
performing feature sets there were four common prognostic
features for both DM and survival. All of them were LoG based
features (3 entropy and 1 standard deviation).
s, actual numbers are reported for each category (format A/B/C). Statistical comparison
on rank sum test (continuous variables).

182) Dataset 1 (n = 98) Dataset 2 (n = 84) P-value
Median (range) Median (range)

62 (41–86) 65 (35–93) 0.63
%) 66(67.3%)/32(32.7%) 48(57.1%)/36(42.9%) 0.29

2/1/55/40 4/2/46/32 0.65
14/10/30/10/17/17 5/13/20/9/22/15 0.26
5/9/53/31 8/8/44/24 0.70
36/57/5/0 45/34/3/2 0.04
3/11/47/37 1/17/45/21 0.12
28.9 (1.8–119.2) 19.5 (3.1–54.9) 0.007
29.7 (1.8–119.2) 21.4 (3.4–54.9) 0.005
13.6 (0.3–117.5) 13.3 (0.7–49.6) 0.36

%) 34(34.7%)/64(65.3%) 35(41.7%)/49(58.3%) 0.45
28(28.57%)/ 32(38.10%)/ 0.002
17(17.35%)/ 13(15.48%)/
33(33.67%)/ 37(44.04%)/
20(20.41%) 2(2.38%)
95/38/22 80/41/6 0.024



Fig. 2. Univariate performances of prognostic features for Distant Metastasis (DM)
and survival. Each point refers to the CI of a feature evaluating the power of feature
to predict metastasis, respectively, survival. Colors refer to the type of feature.
Features whose CI estimation was not significant (FDR < 5%) for both DM and
survival are shown in gray. Overall, 445 of these pairs of CIs are considered to be
significant estimates. Linear regression for all significant pairs of CIs yielded an R-
squared value of 0.92 (F-test, p-value < 2.7 � 10�243).
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We compared the top 15 features that had the highest CIs
(Top15), with tumor volume and diameter (equivalent to basic
metrics). The Top15 radiomic features had notably higher CIs com-
pared to tumor volume and diameter (Fig. 3A).

We also investigated the association of CPFs with DM in our data
set. Three clinical parameters appeared to be significant univariate
prognostic factors: Overall Stage (CI = 0.63, p-value < 6.78 � 10�14),
Gender (CI = 0.63, p-value < 2.35 � 10�11) and tumor grade
(CI = 0.61, p-value < 2.35 � 10�11). Clinical parameters, ranked by
their CI are displayed in Fig. 3B. Overall stage and gender yielded
a higher CI than the radiomic features, although their 95%
confidence interval is wider compared to the radiomic features.

An mRMR based feature selection on all features on Dataset1
(n = 98) was performed to reduce redundancy and select a
Fig. 3. (A) Forest plot of the 15 best performing radiomic features for Distant Metastas
(diameter and volume) was added for comparison. (B) Forest plot of the clinical factors
potential set of complementary and prognostic features. From this
new ranking, the 15 highest mRMR-ranked features were kept
after feature selection to build the radiomic signature. A multivari-
ate Cox regression model to predict DM was developed. Features
were iteratively added in order of high to low mRMR rank on
Dataset1, and Dataset2 was used for independent validation. The
combination that yielded the maximum CI on the discovery
Dataset1 before dropping was defined as the optimal radiomic sig-
nature for predicting DM. This signature consists of three features:
(1) Wavelet HHL–Skewness, (2) Gray-Level Co-occurrence Matrix–
Cluster shade, and (3) LoG 5 mm 2D–Skewness. Cluster shade is a
textural feature sensitive to tumor heterogeneities. Skewness is a
first-order feature that measures the asymmetry of the histogram
from the mean, which here is associated with two different filters
LoG and Wavelet.

As a final step, we compared the radiomic signature to a clinical
Cox regression model containing covariates that significantly dis-
criminated between patients with and without DM in Dataset1 in
univariate analysis. The final model contained overall stage and
tumor grade. This clinical model showed moderate prognostic
power when applied to Dataset2 with coefficients trained on
Dataset1 (CI = 0.57, p-value < 1.03 � 10�7). Combining the clinical
and radiomic signature (trained on Dataset1) showed a significant-
ly (p-value < 1.56 � 10�11) higher association with DM when
applied to Dataset2 (CI = 0.60, p-value < 3.57 � 10�16), compared
to the clinical model. A median split of the patient prediction
scores from applying the combined model on Dataset2 yielded a
significant difference (p-value = 0.049) for metastasis-free
probability estimates (Fig. 4).

Discussion

Medical imaging gives valuable information for diagnostic, treat-
ment planning or surveillance of cancer patients. Routinely, basic
metrics are extracted from these images to utilize as a prognostic
factor [27–30], or to assess treatment response. However, there is
much more tumor phenotypic information captured in these
images. Radiomics are able to quantify tumor phenotypical differ-
ences from medical images by using a large set of imaging features
that can be linked to clinical factors of the tumors. In this study we
extracted 635 radiomic features from a total of 182 lung cancer
patients treated with chemoRT to assess the ability of radiomic
is on univariate analysis (Dataset1, n = 98). Radiomics equivalent of basic metrics
. The absolute C-indices and their 95% confidence interval are shown.
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features as a prognostic biomarker for distant metastasis (DM), and
we validated a radiomic-based signature on an independent valida-
tion dataset. Since DM remains a major cause of mortality in 30–40%
of patients with locally advanced lung adenocarcinoma, early iden-
tification of patients at the highest risk of developing DM would
allow clinicians to adapt treatment such as incorporating consolida-
tion chemotherapy to improve outcomes. Moreover, the theoretical
benefit of consolidation chemotherapy has not been shown in large
randomized studies to date. It is likely because there was no selec-
tion of patients at the highest risk of distant metastases (i.e. patients
who were at low risk of distant metastases were included in these
trials and would not need additional treatment). Future trial design
to demonstrate benefits of consolidation chemotherapy will likely
require stratification to identify those at the highest risk of distant
metastases and may benefit most from additional treatment.

We observed strong individual correlations between clinical
outcomes and quantitative imaging features. A large number of fea-
tures were significant from random to predict DM (91%) and survival
(82%) in univariate analysis after correction for multiple testing.
Moreover, a high linear correlation was found among those 445 fea-
tures that were significant factors of both DM and survival (R2 = 0.92,
p-value < 2.7� 10�243). This high linear correlation is expected as
there is a high correlation between DM and survival (DM greatly
impact patient survival, See Table S4 in the Supplement II.4). Only
a small number of features, 35 for DM and for 12 survival, were prog-
nostic, as defined by a CI > 0.6 and FDR < 5%.

Although we tested a large number of features, to minimize any
risk of over-fitting or bias, we performed a robust validation
approach: all analysis steps, mRMR feature selection, and model
fitting were performed on Dataset1 (n = 98) and the results validat-
ed on an independent validation Dataset2 (n = 84). With this
approach we found a multivariate radiomic DM signature consist-
ing of three features that yielded a high prognostic performance for
DM in Dataset1 (CI = 0.61). Combining the radiomic signature to
clinical predictors showed significant improvement
(p-value < 1.56 � 10�11), compared to the clinical predictors alone.

A recent study from Fried et al. [22] investigated DM prediction
for NSCLC patients. They found a significant model DM
(P-value = 0.005) using both texture features and CPFs. The model
used consisted of eight parameters (two CPFs and six textures). In
another study, Ganeshan et al. [15] applied textural analysis to find
univariate prognostic factors for survival. They focused on two
imaging features (uniformity, associated with two LoG filter). In
our analysis, these features were significant from random but low-
ly ranked by their CI value (184th and 146th CI-ranked features in
Dataset1). However, major differences in study design and imple-
mentation made it difficult to compare them objectively. Fried
et al. [22] used leave-one out cross validation to validate their
model instead of an independent validation dataset. Ganeshan
et al. [15] only used one CT image slice (presenting the largest
cross section) to calculate their features when we used the whole
primary tumor. Finally, both these studies have a smaller patient
cohort, n = 54 [7] and n = 91 [22], and had mixed histology
patients. Our analysis calculated the features from the complete
3D tumor volume, contained only a single histology of NSCLC (ade-
nocarcinoma), and is based on larger cohorts (n = 182) with an
independent validation dataset for the radiomic signature.

A complementary point of the study was to compare basic
metrics [27–29] to radiomic features as prognostic factors for DM.
The first observation made was that Shape-Maximum diameter
(in every direction x/y/z) is a better univariate prognostic factor
than the maximal tumor diameter on an axial slice reported by a
radiologist. The advantage of the radiomic shape features is that
they can be automatically acquired, reproducible [10–12], and take
into account the whole tumor volume, whereas clinically assessed
tumor diameters are manually drawn on a CT slice and are therefore
limited to one dimension of the tumor. Furthermore, shape or
size-based features were not in the top ranked features in our study.
Total tumor volume, has been associated with survival in stage I–III
NSCLC patients treated with radiation therapy in a study from Etiz
et al. [28], and a prior study from our institution by Alexander et al.
[29] also demonstrated an association between primary tumor vol-
ume and overall survival, but not risk of distant metastasis. In our
study, volume was ranked only the 405th (CI = 0.55) and 224th
(CI = 0.56) best univariate prognostic factor for DM and survival
respectively in Dataset1. Thus, while basic metrics such as size
and volume have historically been used as used in the clinical set-
ting because such data are easily acquired, radiomic shape and size
measurements can provide stronger prognostic factors.

A short-coming of our study is the variability in CT acquisition
and reconstruction parameters. Our dataset includes patients from
2001 to 2013. During this time period, the standard of care for CT
acquisition has evolved, differences appeared between our cohorts
for some factors (Table 1). However, despite this variability in the
imaging data (evolution of hardware, progress in informatics),
radiomics was able to detect a strong signal to predict DM despite
a temporal split. Additionally, clinical outcomes are provided by
one center, which makes it hard to evaluate the generalizability
of outcomes to other institutions. However, in comparison with a
recent study [20] investigating clinical outcomes from another
center, patient characteristics or outcomes were comparable.
Future work would therefore involve studying the DM signature
in other histologies and in independent validation sets from other
institutions, assessing its generalizability to all NSCLC.

In conclusion, this study demonstrated strong association
between radiomic features and DM for patients with locally
advanced adenocarcinoma; and presented an independently
validated radiomics signature for DM. This signature would allow
early identification of patients with locally advanced lung
adenocarcinoma at risk of developing DM, allowing clinicians to
individualize treatment (such as intensification of chemotherapy)
to reduce the risk of DM and improve survival.
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