107 research outputs found

    Controls on seawater 231Pa, 230Th and 232Th concentrations along the flow paths of deep waters in the Southwest Atlantic

    Get PDF
    Measurements of dissolved Th-230, Pa-231 and Th-232 were made for twelve full-depth profiles along a Southwest Atlantic section during GEOTRACES cruise GA02S. Sampling captures all the main Atlantic deep water masses along their meridional flow paths and allows insight into the control on Th and Pa in a setting where waters are flowing in opposing directions, with direct relevance to understanding the use of Pa-231/Th-230 as an ocean-circulation proxy. Water-column Th-230 increases linearly with depth, in line with expected reversible scavenging models. Pa-231 increases from the surface to similar to 1200-1500 m, but is invariant or decreases with greater depth, deviating from the behavior expected for reversible scavenging. Dissolved Pa-231/Th-230 ratios display a mid-water-column maximum at similar to 1000-2000 m which is broadly coincident with Upper Circumpolar Deep Water. Below 2000 m, nuclide distributions and ratios exhibit no dependence on water mass, nor any indication of progressive change within a water mass, challenging the use of Pa-231/Th-230 as a past circulation tracer in the South Atlantic. Calculation of horizontal transport of Th-230 and Pa-231 by ocean circulation indicates a net southward export out of the Atlantic of 19% of the Pa-231 and 3% of the Th-230 produced in that ocean. This removal is all from the North Atlantic while, in the South Atlantic, removal to sediment equals production. Simple one-dimensional modeling can simulate Th-230 profiles but not the mid-water-column maximum observed in Pa-231 profiles, suggesting an additional source of Pa-231 (perhaps lateral transport from the margin) or removal at depth due to bottom scavenging. Near seafloor minima in concentrations indicates bottom scavenging of Th-230 and (231)pa, which is enhanced in the presence of nepheloid layers, particularly for 231Pa. This additional scavenging fractionates Th-230 and Pa-231 and, in the presence of nepheloid layers, may lead to an increase in sedimentary Pa-231/Th-230 ratios. Th-232 concentrations were paired with Th-230-derived residence times in the upper 250 m of the water column to test the application of Th as a tracer of dust deposition. Maxima in Th-232 indicate high dust input from the African and possibly South American continents

    Distributions of particulate Heme b in the Atlantic and Southern Oceans-Implications for electron transport in phytoplankton

    Get PDF
    Concentrations of heme b, the iron-containing component of b-type hemoproteins, ranged from  500). High chl a:heme b ratios resulted from relative decreases in heme b, suggesting proteins such as cytochrome b6f, the core complex of photosystem II, and eukaryotic nitrate reductase were depleted relative to proteins containing chlorophyll such as the eukaryotic light-harvesting antenna. Relative variations in heme b, particulate organic carbon, and chl a can thus be indicative of a physiological response of the phytoplankton community to the prevailing growth conditions, within the context of large-scale changes in phytoplankton community composition

    Mercury in the Black Sea:New Insights From Measurements and Numerical Modeling

    Get PDF
    Redox conditions and organic matter control marine methylmercury (MeHg) production. The Black Sea is the world's largest and deepest anoxic basin and is thus ideal to study Hg species along the extended redox gradient. Here we present new dissolved Hg and MeHg data from the 2013 GEOTRACES MEDBlack cruise (GN04_leg2) that we integrated into a numerical 1-D model, to track the fate and dynamics of Hg and MeHg. Contrary to a previous study, our new data show highest MeHg concentrations in the permanently anoxic waters. Observed MeHg/Hg percentage (range 9-57%) in the anoxic waters is comparable to other subsurface maxima in oxic open-ocean waters. With the modeling we tested for various Hg methylation and demethylation scenarios along the redox gradient. The results show that Hg methylation must occur in the anoxic waters. The model was then used to simulate the time evolution (1850-2050) of Hg species in the Black Sea. Our findings quantify (1) inputs and outputs of Hg-T (similar to 31 and similar to 28 kmol yr(-1)) and MeHgT (similar to 5 and similar to 4 kmol yr(-1)) to the basin, (2) the extent of net demethylation occurring in oxic (similar to 1 kmol yr(-1)) and suboxic water (similar to 6 kmol yr(-1)), (3) and the net Hg methylation in the anoxic waters of the Black Sea (similar to 11 kmol yr(-1)). The model was also used to estimate the amount of anthropogenic Hg (85-93%) in the Black Sea

    Dissolved Cd, Co, Cu, Fe, Mn, Ni and Zn in the Arctic Ocean

    Get PDF
    During the Polarstern (PS94) expedition, summer 2015, part of the international GEOTRACES program, sources and sinks of dissolved (D) Cd, Co, Cu, Fe, Mn, Ni and Zn were studied in the central Arctic Ocean. In the Polar Surface Water in which the TransPolar Drift (TPD) is situated, salinity and ÎŽ18O derived fractions indicated a distinct riverine source for silicate DCo, DCu, DFe, DMn and DNi. Linear relationships between DMn and the meteoric fraction depended on source distance, likely due to Mn-precipitation during transport. In the upper 50 m of the Makarov Basin, outside the TPD core, DCo, DMn, DNi, DCd and DCu were enriched by Pacific waters, whereas DFe seemed diluted. DCo, DFe, DMn and DZn were relatively high in the Barents Sea and led to enrichment of Atlantic water flowing into the Nansen Basin. Deep concentrations of all metals were significantly lower in the Makarov Basin compared to the Nansen and Amundsen, the Eurasian, Basins. The Gakkel ridge hydrothermal input and higher continental slope convection are explanations for higher metal concentrations in the Eurasian Basins. Although scavenging rates are lower in the Makarov Basin compared to the Eurasian Basins, the residence time is longer and therefore scavenging can decrease the dissolved concentrations with time. This study provides a baseline to assess future change, and additionally identifies processes driving trace metal distributions. Our results underline the importance of fluvial input as well as shelf sources and internal cycling, notably scavenging, for the distribution of bio-active metals in the Arctic Ocean

    Arctic Continental Margin Sediments as Possible Fe and Mn Sources to Seawater as Sea Ice Retreats: Insights From the Eurasian Margin

    Get PDF
    Continental margins are hot spots for iron (Fe) and manganese (Mn) cycling. In the Arctic Ocean, these depositional systems are experiencing rapid changes that could significantly impact biogeochemical cycling. In this study, we investigate whether continental margin sediments north of Svalbard represent a source or sink of Fe and Mn to the water column and how climate change might alter these biogeochemical cycles. Our results highlight that sediments on the Yermak Plateau and Sofia Basin exhibit accumulations of Fe and Mn phases compared to average shale. Conversely, sediments from the Barents Sea slope exhibit lower enrichments of Fe and Mn compared to average shale, with the exception of enriched, near‐surface sediment layers. Pore waters from these slope sites provide evidence for Fe and Mn reduction and diffusion of Fe and Mn into near surface sediments, which are susceptible to physical or biogeochemical remobilization. These regional patterns are best explained by the spatial distribution of sea ice coverage and labile organic carbon fluxes to the seafloor. As sea ice continues to retreat and the Yermak Plateau becomes seasonally ice‐free, productivity is expected to increase, which would increase the flux of carbon to the sediments, thereby increasing oxidant demand, and the reduction of Fe and Mn mineral phases. Our results suggest that as sea ice continues to retreat, the Yermak Plateau and other Arctic continental margins could become sources of Fe and Mn to Arctic bottom waters

    Return of naturally sourced Pb to Atlantic surface waters

    Get PDF
    Anthropogenic emissions completely overwhelmed natural marine lead (Pb) sources during the past century, predominantly due to leaded petrol usage. Here, based on Pb isotope measurements, we reassess the importance of natural and anthropogenic Pb sources to the tropical North Atlantic following the nearly complete global cessation of leaded petrol use. Significant proportions of up to 30-50% of natural Pb, derived from mineral dust, are observed in Atlantic surface waters, reflecting the success of the global effort to reduce anthropogenic Pb emissions. The observation of mineral dust derived Pb in surface waters is governed by the elevated atmospheric mineral dust concentration of the North African dust plume and the dominance of dry deposition for the atmospheric aerosol flux to surface waters. Given these specific regional conditions, emissions from anthropogenic activities will remain the dominant global marine Pb source, even in the absence of leaded petrol combustion

    Iron Biogeochemistry in the High Latitude North Atlantic Ocean

    Get PDF
    Iron (Fe) is an essential micronutrient for marine microbial organisms, and low supply controls productivity in large parts of the world’s ocean. The high latitude North Atlantic is seasonally Fe limited, but Fe distributions and source strengths are poorly constrained. Surface ocean dissolved Fe (DFe) concentrations were low in the study region (<0.1 nM) in summer 2010, with significant perturbations during spring 2010 in the Iceland Basin as a result of an eruption of the Eyjafjallajökull volcano (up to 2.5 nM DFe near Iceland) with biogeochemical consequences. Deep water concentrations in the vicinity of the Reykjanes Ridge system were influenced by pronounced sediment resuspension, with indications for additional inputs by hydrothermal vents, with subsequent lateral transport of Fe and manganese plumes of up to 250–300 km. Particulate Fe formed the dominant pool, as evidenced by 4–17 fold higher total dissolvable Fe compared with DFe concentrations, and a dynamic exchange between the fractions appeared to buffer deep water DFe. Here we show that Fe supply associated with deep winter mixing (up to 103 nmol m−2 d−1) was at least ca. 4–10 times higher than atmospheric deposition, diffusive fluxes at the base of the summer mixed layer, and horizontal surface ocean fluxes

    Comfort and patient-centred care without excessive sedation:the eCASH concept

    Get PDF
    We propose an integrated and adaptable approach to improve patient care and clinical outcomes through analgesia and light sedation, initiated early during an episode of critical illness and as a priority of care. This strategy, which may be regarded as an evolution of the Pain, Agitation and Delirium guidelines, is conveyed in the mnemonic eCASH—early Comfort using Analgesia, minimal Sedatives and maximal Humane care. eCASH aims to establish optimal patient comfort with minimal sedation as the default presumption for intensive care unit (ICU) patients in the absence of recognised medical requirements for deeper sedation. Effective pain relief is the first priority for implementation of eCASH: we advocate flexible multimodal analgesia designed to minimise use of opioids. Sedation is secondary to pain relief and where possible should be based on agents that can be titrated to a prespecified target level that is subject to regular review and adjustment; routine use of benzodiazepines should be minimised. From the outset, the objective of sedation strategy is to eliminate the use of sedatives at the earliest medically justifiable opportunity. Effective analgesia and minimal sedation contribute to the larger aims of eCASH by facilitating promotion of sleep, early mobilization strategies and improved communication of patients with staff and relatives, all of which may be expected to assist rehabilitation and avoid isolation, confusion and possible long-term psychological complications of an ICU stay. eCASH represents a new paradigm for patient-centred care in the ICU. Some organizational challenges to the implementation of eCASH are identified.SCOPUS: re.jinfo:eu-repo/semantics/publishe
    • 

    corecore