4,215 research outputs found

    Pseudotumor cerebri syndrome in childhood : incidence, clinical profile and risk factors in a national prospective population-based cohort study

    Get PDF
    Aim To investigate the epidemiology, clinical profile and risk factors of pseudotumor cerebri syndrome (PTCS) in children aged 1-16 years. Methods A national prospective population-based cohort study over 25 months. Newly diagnosed PTCS cases notified via British Paediatric Surveillance Unit (BPSU) were ascertained using classical diagnostic criteria and categorised according to 2013 revised diagnostic criteria. We derived national age, sex and weight-specific annual incidence rates and assessed effects of sex and weight category. Results We identified 185 PTCS cases of which 166 also fulfilled revised diagnostic criteria. The national annual incidence (95% CI) of childhood PTCS aged 1-16 years was 0.71 (0.57- 0.87) per 100,000 population increasing with age and weight to 4.18 and 10.7 per 100,000 in obese 12-15 year old boys and girls respectively. Incidence rates under 7 years were similar in both sexes. From 7 years onwards, the incidence in girls was double that in boys, but only in overweight (including obese) children. In 12-15 year old children, an estimated 82% of the incidence of PTCS was attributable to obesity. Two subgroups of PTCS were apparent: 168 (91%) cases aged from 7 years frequently presented on medication and with headache, and were predominantly female and obese. The remaining 17 (9%) cases under 7 years often lacked these risk factors and commonly presented with new onset squint. Conclusions This uniquely largest population-based study of childhood PTCS will inform the design of future intervention studies. It suggests that weight reduction is central to the prevention of PTCS

    Why Optically--Faint AGN Are Faint: The Spitzer Perspective

    Full text link
    Optically--faint X-ray sources (those with f_X/f_R > 10) constitute about 20% of X-ray sources in deep surveys, and are potentially highly obscured and/or at high redshift. Their faint optical fluxes are generally beyond the reach of spectroscopy. For a sample of 20 optically--faint sources in CDFS, we compile 0.4--24 um photometry, relying heavily on Spitzer. We estimate photometric redshifts for 17 of these 20 sources. We find that these AGN are optically--faint both because they lie at significantly higher redshifts (median z ~ 1.6) than most X-ray--selected AGN, and because their spectra are much redder than standard AGN. They have 2--8 keV X-ray luminosities in the Seyfert range, unlike the QSO--luminosities of optically--faint AGN found in shallow, wide--field surveys. Their contribution to the X-ray Seyfert luminosity function is comparable to that of z>1 optically--bright AGN.Comment: Accepted for publication in the Astrophysical Journa

    The Population of Weak Mg II Absorbers I. A Survey of 26 QSO HIRES/Keck Spectra

    Full text link
    We present a search for "weak" MgII absorbers [those with W_r(2796) < 0.3 A in the HIRES/Keck spectra of 26 QSOs. We found 30, of which 23 are newly discovered. The spectra are 80% complete to W_r(2796) = 0.02 A and have a cumulative redshift path of ~17.2 for the redshift range 0.4 < z < 1.4. The number of absorbers per unit redshift, dN/dz, is seen to increase as the equivalent width threshold is decreased; we obtained dN/dz = 1.74+/-0.10 for our 0.02 <= W_r(2796) < 0.3 A sample. The equivalent width distribution follows a power law with slope -1.0; there is no turnover down to W_r(2796) = 0.02 A at = 0.9. Weak absorbers comprise at least 65% of the total MgII absorption population, which outnumbers Lyman limit systems (LLS) by a factor of 3.8+/-1.1; the majority of weak MgII absorbers must arise in sub-LLS environments. Tentatively, we predict that ~5% of the Lyman-alpha forest clouds with W_r(1215) > 0.1 A will have detectable MgII absorption to W_r,min(2796) = 0.02 A and that this is primarily a high-metallicity selection effect (Z/Z_sun] > -1). This implies that MgII absorbing structures figure prominently as tracers of sub-LLS environments where gas has been processed by stars. We compare the number density of W_r(2796) > 0.02 A absorbers with that of both high and low surface brightness galaxies and find a fiducial absorber size of 35h^-1 to 63h^-1 kpc, depending upon the assumed galaxy population and their absorption properties. The individual absorbing "clouds" have W_r(2796) <= 0.15 A and their narrow (often unresolved) line widths imply temperatures of ~25,000 K. We measured W_r(1548) from CIV in FOS/HST archival spectra and, based upon comparisons with FeII, found a range of ionization conditions (low, high, and multi-phase) in absorbers selected by weak MgII.Comment: Accepted Version: 43 pages, PostScript figures embedded; accepted to ApJ; updated version includes analysis of CIV absorptio

    Characterization of uncertainties in atmospheric trace gas inversions using hierarchical Bayesian methods

    Get PDF
    We present a hierarchical Bayesian method for atmospheric trace gas inversions. This method is used to estimate emissions of trace gases as well as "hyper-parameters" that characterize the probability density functions (PDFs) of the a priori emissions and model-measurement covariances. By exploring the space of "uncertainties in uncertainties", we show that the hierarchical method results in a more complete estimation of emissions and their uncertainties than traditional Bayesian inversions, which rely heavily on expert judgment. We present an analysis that shows the effect of including hyper-parameters, which are themselves informed by the data, and show that this method can serve to reduce the effect of errors in assumptions made about the a priori emissions and model-measurement uncertainties. We then apply this method to the estimation of sulfur hexafluoride (SF6) emissions over 2012 for the regions surrounding four Advanced Global Atmospheric Gases Experiment (AGAGE) stations. We find that improper accounting of model representation uncertainties, in particular, can lead to the derivation of emissions and associated uncertainties that are unrealistic and show that those derived using the hierarchical method are likely to be more representative of the true uncertainties in the system. We demonstrate through this SF6 case study that this method is less sensitive to outliers in the data and to subjective assumptions about a priori emissions and model-measurement uncertainties than traditional methods

    Spitzer and Hubble Constraints on the Physical Properties of the z~7 Galaxy Strongly Lensed by Abell 2218

    Full text link
    We report the detection of a z~7 galaxy strongly lensed by the massive galaxy cluster Abell 2218 (z=0.175) at 3.6 and 4.5 um using the Spitzer Observatory and at 1.1 um using the Hubble Space Telescope. The new data indicate a refined photometric redshift in the range of 6.6-6.8 depending on the presence of Ly-alpha emission. The spectral energy distribution is consistent with having a significant Balmer break, suggesting that the galaxy is in the poststarburst stage with an age of at least ~50 Myr and quite possibly a few hundred Myr. This suggests the possibility that a mature stellar population is already in place at such a high redshift. Compared with typical Lyman break galaxies at z~3-4, the stellar mass is an order of magnitude smaller (~10^{9} Msun), but the specific star formation rate (star formation rate/M_{star}) is similarly large (> 10^{-9} yr^{-1}), indicating equally vigorous star-forming activity.Comment: 11 pages, 2 figures, 2 tables; Accepted for publication in ApJ

    NMR Imaging of low pressure, gas-phase transport in packed beds using hyperpolarized xenon-129

    Get PDF
    Gas-phase magnetic resonance imaging (MRI) has been used to investigate heterogeneity in mass transport in a packed bed of commercial, alumina, catalyst supports. Hyperpolarized 129Xe MRI enables study of transient diffusion for micro- scopic porous systems using xenon chemical shift to selectively image gas within the pores, and, thence, permits study of low-density, gas-phase mass-transport, such that diffusion can be studied in the Knudsen regime, and not just the molecular regime, which is the limitation with other current techniques. Knudsen-regime diffusion is common in many industrial, catalytic processes. Significantly, larger spatial variability in mass transport rates across the packed bed was found compared to techniques using only molecular diffusion. It has thus been found that that these heterogeneities arise over length-scales much larger tha

    Recent and future trends in synthetic greenhouse gas radiative forcing

    Get PDF
    Atmospheric measurements show that emissions of hydrofluorocarbons (HFCs) and hydrochlorofluorocarbons are now the primary drivers of the positive growth in synthetic greenhouse gas (SGHG) radiative forcing. We infer recent SGHG emissions and examine the impact of future emissions scenarios, with a particular focus on proposals to reduce HFC use under the Montreal Protocol. If these proposals are implemented, overall SGHG radiative forcing could peak at around 355 mW m[superscript −2] in 2020, before declining by approximately 26% by 2050, despite continued growth of fully fluorinated greenhouse gas emissions. Compared to “no HFC policy” projections, this amounts to a reduction in radiative forcing of between 50 and 240 mW m[superscript −2] by 2050 or a cumulative emissions saving equivalent to 0.5 to 2.8 years of CO2 emissions at current levels. However, more complete reporting of global HFC emissions is required, as less than half of global emissions are currently accounted for.Natural Environment Research Council (Great Britain) (Advanced Research Fellowship NE/I021365/1)United States. National Aeronautics and Space Administration (Upper Atmospheric Research Program Grant NNX11AF17G)United States. National Oceanic and Atmospheric Administratio

    Observations from Preliminary Experiments on Spatial and Temporal Pressure Measurements from Near-Field Free Air Explosions

    Get PDF
    It is self-evident that a crucial step in analysing the performance of protective structures is to be able to accurately quantify the blast load arising from a high explosive detonation. For structures located near to the source of a high explosive detonation, the resulting pressure is extremely high in magnitude and highly non-uniform over the face of the target. There exists very little direct measurement of blast parameters in the nearfield, mainly attributed to the lack of instrumentation sufficiently robust to survive extreme loading events yet sensitive enough to capture salient features of the blast. Instead literature guidance is informed largely by early numerical analyses and parametric studies. Furthermore, the lack of an accurate, reliable data set has prevented subsequent numerical analyses from being validated against experimental trials. This paper presents an experimental methodology that has been developed in part to enable such experimental data to be gathered. The experimental apparatus comprises an array of Hopkinson pressure bars, fitted through holes in a target, with the loaded faces of the bars flush with the target face. Thus, the bars are exposed to the normally or obliquely reflected shocks from the impingement of the blast wave with the target. Pressure-time recordings are presented along with associated Arbitary-Langrangian-Eulerian modelling using the LS-DYNA explicit numerical code. Experimental results are corrected for the effects of dispersion of the propagating waves in the pressure bars, enabling accurate characterisation of the peak pressures and impulses from these loadings. The combined results are used to make comments on the mechanism of the pressure load for very near-field blast events

    Structure-transport relationships in disordered solids using integrated rate of gas sorption and mercury porosimetry

    Get PDF
    This work describes a new experimental approach that delivers novel information on structure-transport relationships in disordered porous pellets. Integrated rate of adsorption and mercury porosimetry experiments have been used to probe the relative importance of particular sub-sets of pores to mass transport rates within the network of two disordered porous solids. This was achieved by examining the relative rates of low pressure gas uptake into a network, both before, and after, a known set of pores was filled with frozen, entrapped mercury. For catalyst pellets, formed by tableting, it has been found that the compaction pressure affects the relative contribution to overall mass transport made by the subset of the largest pores. Computerised X-ray tomography (CXT) has been used to map the spatial distribution of entrapped mercury and revealed that the relative importance of the sub-sets of pores is related to their level of pervasiveness across the pellet, and whether they percolate to the centre of the pellet. It has been shown that a combination of integrated mercury porosimetry and gas sorption, together with CXT, can comprehensively reveal the impact of manufacturing process parameters on pellet structure and mass transport properties. Hence, the new method can be used in the design and optimisation of pellet manufacturing processes
    corecore