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Abstract. We present a hierarchical Bayesian method for at-
mospheric trace gas inversions. This method is used to esti-
mate emissions of trace gases as well as “hyper-parameters”
that characterize the probability density functions (PDFs) of
the a priori emissions and model-measurement covariances.
By exploring the space of “uncertainties in uncertainties”,
we show that the hierarchical method results in a more com-
plete estimation of emissions and their uncertainties than tra-
ditional Bayesian inversions, which rely heavily on expert
judgment. We present an analysis that shows the effect of
including hyper-parameters, which are themselves informed
by the data, and show that this method can serve to reduce
the effect of errors in assumptions made about the a priori
emissions and model-measurement uncertainties. We then
apply this method to the estimation of sulfur hexafluoride
(SF6) emissions over 2012 for the regions surrounding four
Advanced Global Atmospheric Gases Experiment (AGAGE)
stations. We find that improper accounting of model repre-
sentation uncertainties, in particular, can lead to the deriva-
tion of emissions and associated uncertainties that are un-
realistic and show that those derived using the hierarchical

method are likely to be more representative of the true uncer-
tainties in the system. We demonstrate through this SF6 case
study that this method is less sensitive to outliers in the data
and to subjective assumptions about a priori emissions and
model-measurement uncertainties than traditional methods.

1 Introduction

Inverse modeling is widely used to estimate sources and
sinks of trace gas fluxes and their distributions using mea-
surements of atmospheric mole fractions and chemical trans-
port models (CTMs). The estimation of surface fluxes has
been performed at a variety of spatial and temporal scales,
ranging from regional (e.g.,Stohl et al., 2009; Manning et al.,
2011; Rigby et al., 2011) to global (e.g.,Chen and Prinn,
2006; Mühle et al., 2010; Bousquet et al., 2011) and for
timescales of hours to years.

Most inversions utilize a Bayesian framework and incor-
porate a priori information to condition the system, as shown
by Eq. (1) (normalizing factors are not shown throughout this
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text for brevity) (Enting et al., 1995).

ρ(x|y) ∝ ρ(y|x)ρ(x) (1)

The Bayesian framework with Gaussian probability den-
sity functions (PDFs) and linear models used in most trace
gas inversions gives rise to the cost function shown in
Eq. (2). The deviations between measurements,y, and
model-simulated mole fractions,Hx, whereH is a matrix
that contains the sensitivities of atmospheric mole fractions
to changes in emissions sources andx is a vector contain-
ing the emission sources, are weighted by uncertainty covari-
ance,R. Similarly, deviations between emissions and their
a priori values,xprior, are weighted by uncertainty covari-
ance,P. This cost function is minimized with respect tox
to find the “optimal” point that minimizes the total mismatch
of the two terms (Enting, 2002; Tarantola, 2005).

J = (y − Hx)TR−1(y − Hx) + (x − xprior)
TP−1(x − xprior) (2)

This framework has generally been used because of its sim-
plicity to solve. Several limitations are however present.
Bayesian methods rely on knowledge of model-measurement
(R) and a priori emissions (P) uncertainties, and the derived
fluxes and associated uncertainties strongly depend on these
parameters. Model-measurement uncertainties describe un-
certainties in the instruments as well as uncertainties asso-
ciated with the model’s simulation of a measurement. The
model error can be split into several components: structural
errors within the CTM or meteorological model (Peylin et al.,
2002; Thompson et al., 2011); model representation error,
which describe errors in the representation of a point mea-
surement in representing a grid volume (Chen and Prinn,
2006); aggregation errors, which result from averaging pa-
rameters over space and time and assuming fixed distribu-
tions within those domains (Kaminski et al., 2001; Thomp-
son et al., 2011). Knowledge of these uncertainties is criti-
cal for robustly estimating posterior fluxes and their uncer-
tainties; however, they are largely elicited through “expert
judgment”. The lack of objective methodology in ascertain-
ing these uncertainties has been identified in many studies
as a major limitation of traditional inverse methods (Rayner
et al., 1999; Peylin et al., 2002; Law et al., 2002; Kaminski
et al., 1999).

Some studies have used atmospheric data to “tune” co-
variances and then used these optimized parameters to derive
fluxes (Michalak et al., 2005; Berchet et al., 2013). Several
issues exist in these methods: (1) the uncertainties derived in
the tunedR andP cannot be propagated through to estimat-
ing fluxes and their uncertainties, and (2) the Bayesian statis-
tics used to derive fluxes assume that each term of the cost
function in Eq. (2) is independent. Because both the a priori
emissions and observations were used to derive the tunedR
andP, independence between the two terms can no longer
be assumed and correlations between the two will exist that
are not fully accounted for; (3) these methods typically use
Gaussian PDFs in setting up the cost function.

We present a hierarchical Bayesian method to estimate
trace gas emissions and additional parameters, which we call
“hyper-parameters”, that describe the a priori emissions PDF
and the model-measurement uncertainty PDF. Compared to
traditional methods, the a priori information in the system is
extended to include a set of hyper-parameters equipped with
their own prior distributions, which we call “hyper-priors”.
Throughout the text, we refer to the emissions PDF that
is characterized by these hyper-parameters as the “a priori
emissions PDF”.

We first describe the development of a hierarchical frame-
work. Beginning with Bayes’ theorem in Eq. (1), we seek
to estimate the joint distribution of two parameters,x andθ ,
using datay (Eq.3).

ρ(x,θ |y) ∝ ρ(y|x,θ)ρ(x,θ) (3)

A joint distribution can be decomposed using the “probabil-
ity chain rule” (Eq.4).

ρ(x,θ) = ρ(x|θ)ρ(θ) (4)

Substitution of Eq. (4) into Eq. (3) leads to a hierarchical
Bayesian model, in which bothx andθ are informed by the
data.

ρ(x,θ |y) ∝ ρ(y|x,θ)ρ(x|θ)ρ(θ) (5)

Hierarchical methods have been successfully applied in other
fields (Riccio et al., 2006; Gelman, A. and Hill, J., 2002;
Lehuger et al., 2009). A general summary and the application
to uncertainty analysis can be found inCressie et al.(2009).

In this application, in which we estimate hyper-parameters
in addition to fluxes, a hierarchical approach allows us to
explore the additional space of “uncertainties in uncertain-
ties”. The framework ensures that estimated parameters and
their uncertainties and covariances are passed systematically
through the inversion. The entire set of fluxes and hyper-
parameters are updated in one step, therefore using measure-
ments only once.

Because there often does not exist an analytical solu-
tion to maximize the posterior PDF represented in Eq. (5),
Markov chain Monte Carlo (MCMC) is used (Tarantola,
2005). MCMC samples the PDFs of a set of parameters by
constructing a Markov chain that represents the posterior
PDF after a large number of steps. MCMC has the additional
advantage that it may be used on a broad class of models,
which need not be Gaussian. For example, positive fluxes
can be constrained through the use of an a priori emissions
PDF with support only on the positive real axis (Rigby et al.,
2011).

We show that the hierarchical method results in a more
complete uncertainty characterization than traditional inverse
methods in which a priori emissions and model-measurement
covariances are based largely on expert judgment. We present
an application of this method for inversions of trace gas
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emissions and explore the ways in which the method can
be used to quantify uncertainties in these inversions. Finally,
we utilize this method to estimate regional sulfur hexafluo-
ride (SF6) emissions using measurements from the Advanced
Global Atmospheric Gases Experiment (AGAGE) network
and the UK Met Office Numerical Atmospheric-dispersion
Modelling Environment v3 (NAME) transport model (Jones
et al., 2007; Ryall and Maryon, 1998).

2 Application of hierarchical Bayesian modeling to
emissions estimation

2.1 Theoretical framework

We are interested in estimating fluxes of trace gases and their
uncertainties using measurements of atmospheric mole frac-
tions. Fluxes and hyper-parameters could vary in space and
time and are shown in this framework as vectors that could
be estimated with spatial and temporal resolution. We ap-
ply the hierarchical Bayesian model to use data,y, to esti-
matex, a vector of emissions and boundary conditions to
the inversion domain, as well as a set of hyper-parameters
that govern the a priori emissions and model-measurement
uncertainty PDFs. The hyper-parameters include vectorsµx

andσ x , which describe the log mean and log standard de-
viation of a lognormal a priori emissions PDF, the vector
σ y , which describes the standard deviation of a Gaussian
model-measurement uncertainty PDF, and scalarτ , which is
a model-measurement autocorrelation timescale. The model-
measurement covariance matrix,R, is formed with diagonal
terms comprised by the squares ofσ y . Off-diagonal terms
are computed through Eq. (6), whererij is the covariance be-
tween measurementsi andj , rii andrjj are the variances of
each measurement,1ti,j is the time between measurements
andτ is the autocorrelation timescale.

rij =
√

rii ·
√

rjj · exp

(
−1ti,j

τ

)
(6)

The joint distribution ofx,µx,σ x,σ y andτ is expressed
through Eq. (7), following the framework developed above.

ρ(x,µx,σ x,σ y,τ |y) ∝ ρ(y|x,σ y,τ ) · ρ(x|µx,σ x)

· ρ(µx) · ρ(σ x) · ρ(σ y) · ρ(τ) (7)

It is shown in Eq. (7) that each hyper-parameter requires
a hyper-prior PDF to be specified. We have chosen to rep-
resent the PDF of each parameter by Eqs. (8)–(13). The log-
normal distribution (LN) was used for emissions and PDF pa-
rameters because the distribution is skewed so that negative
values are not defined but large values have small nonzero
densities. An exponential PDF (EXP) was used forτ because
the mode is zero, and in most inversions it is generally as-
sumed that there is no model-measurement autocorrelation.
Model-measurement uncertainties were assumed to be Gaus-
sian (N) because we assume random errors in the instrument

and model to be symmetric. The functional forms used in
this application of the hierarchical Bayesian framework rep-
resent only one of many possible applications and can be re-
formulated to represent different assumptions. Model para-
metric uncertainties have not been explicitly considered here
but have the potential to lead to biases in the outcome of the
inversion.

ρ(µx) = LN(µx,prior,σµ,x,prior) (8)

ρ(σ x) = LN(σ x,prior,σ σ,x,prior) (9)

ρ(σ y) = LN(σ y,prior,σ σ,y,prior) (10)

ρ(τ) = EXP

(
1

τprior

)
(11)

ρ(x|µx,σ x) = LN(µx,σ x) (12)

ρ(y|x,R) = N(Hx,R) (13)

The posterior joint distribution,ρ(x,µx,σ x,σ y,τ |y), is es-
timated using MCMC with a Metropolis–Hastings algo-
rithm (Rigby et al., 2011; Tarantola, 2005). The Metropolis–
Hastings algorithm generates states from a proposal distri-
bution and selectively accepts transitions so that the station-
ary distribution of the resulting chain represents the posterior
distribution. A “burn-in” period of 25 000 iterations was dis-
carded to remove any memory of the initial state, followed by
25 000 iterations to form the posterior PDFs. Convergence
can be assessed using metrics such as Geweke’s diagnostic
(Geweke, 1992). One of the main advantages of this algo-
rithm is that the normalization factor implied in Eq. (7) does
not need to be computed. The chain is constructed such that
each parameter has “knowledge” of the state of the other pa-
rameters, and, therefore, uncertainties and correlations be-
tween parameters are built into the chain. Using this hierar-
chical approach, posterior emissions and associated uncer-
tainties, which are of primary interest, fully account for un-
certainties in hyper-parameters.

The set of parameters being estimated (x,µx,σ x,σ y,τ ) is
denoted asX. The criterion for acceptance at iterationn for
the proposed set of parameters,X′, is

Xn =

{
X′, with probabilitya

Xn−1, with probability 1− a
(14)

a = min

[
1,

ρ(X′
|y)

ρ(X|y)

]
. (15)

The sizes of the proposal distributions were adjusted so that
the resulting acceptance ratio for each parameter was be-
tween 0.25 and 0.5 to achieve optimal mixing (Roberts et al.,
1997).

The main computational differences between the hierar-
chical inversion and a non-hierarchical inversion performed
using MCMC are as follows (in order of importance): (1)
the hierarchical inversion solving for uncertainty parameters
requires that the inverse and determinant of covariance ma-
trices (e.g.,R) be computed in every iteration, while a tra-
ditional inversion with a fixed uncertainty structure would

www.atmos-chem-phys.net/14/3855/2014/ Atmos. Chem. Phys., 14, 3855–3864, 2014
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require that this operation be performed only once; (2) the
hierarchical inversion solves for a larger number of parame-
ters, inducing a small additional computational cost. For our
applications, the main computational burden was 1. Based on
traditional computational methods, as the size of the obser-
vation and/or parameter space grows, the cost of computing
the inverse and determinant will be approximately n3. There-
fore, for very large problems, alternative computational ap-
proaches may be necessary. Several methods exist to dramat-
ically reduce the computational cost of inverting large (co-
variance) matrices, if required, for higher-dimensional appli-
cations (see for example,Sun et al., 2012). For an inverse
problem similar to the one presented in this study, observa-
tional and/or parameter spaces of the order of a thousand ele-
ments can be readily solved with minimal code modification,
on the order of minutes on a moderately powerful worksta-
tion. We anticipate that MCMC algorithms could be devel-
oped that could extend this to tens of thousands of elements,
if required.

2.2 Pseudo-data experiment

We are interested in investigating the effect of the hierar-
chical method on posterior emissions uncertainties and use
a pseudo-data simulation to demonstrate the concept. In this
simulation, 1000 ensemble members were randomly gen-
erated from a known emissions distribution,ρ(x|µ∗

x,σ
∗
x),

whereµ∗
x andσ ∗

x were known and fixed.
Each emissions ensemble member was used to simu-

late mole fraction pseudo-data, which were then applied
in both a hierarchical Bayesian inversion (HB) and a non-
hierarchical Bayesian inversion (NHB) to infer emissions for
cases in which the a priori emissions uncertainties were in-
correctly specified. In this work we adopt the stance that un-
certainty quantification is correct if, on average, a given re-
alization,x∗, sampled fromρ(x|µ∗,σ ∗), is consistent with
the marginal distributionρ(x|y). If uncertainty is correctly
captured, then 5 % of the timex∗ should lie in the 5th per-
centile of the posterior distribution, 10 % within the 10th per-
centile and so on. We can thus plot a quantile–quantile (Q–Q)
plot to compare the theoretical with the empirical quantile. If
the empirical and true quantiles lie on the 1: 1 line, we can
conclude that the inversion is correctly capturing system un-
certainties. If the uncertainties used in the inversion are too
tightly constrained, ensemble members will tend to consis-
tently lie in the tails of the estimated posterior distribution
so that the Q–Q plot resembles an inverted “S-curve” around
the diagonal. If the uncertainties are too lax, then the poste-
rior judgments are under-confident and the Q–Q plot follows
an S-curve around the diagonal.

Gaussian distributions were chosen for this pseudo-
experiment for their simplicity and symmetry, but these re-
sults can be extrapolated to any distribution. Pseudo-data
were generated from each realization,x∗, using the NAME
model for 1 month at Mace Head, Ireland, and include ran-

dom Gaussian noise with standard deviation,σ ∗
y . For each

inversion, with parameter and hyper-parameter PDFs shown
through Eq. (16), we fixed the mean of the a priori emis-
sions distribution to beµ∗

x and tested the effect of mak-
ing incorrect assumptions in the inversion about the a priori
emissions uncertainty. Two cases were investigated: one in
which the a priori emissions uncertainty (σ x,prior) was one-
half and one in which it was twiceσ ∗

x , respectively. This is
equivalent to an inversion where we incorrectly assumed the
a priori emissions uncertainty to be smaller or larger than
the “truth”. In the NHB case, these values were fixed (i.e.,
there is no uncertainty inσ x,prior); in the HB case, some flex-
ibility was allowed for the inversion to adjust these values.
The uncertainty in the uncertainty,σσ,x , was assumed to be
100 % ofσ x,prior, and model-measurement uncertainty was
specified exactly asσ ∗

y . To generate the estimated quantiles,
we tracked the quantile ofx∗ in the posterior distribution of
each inversion and determined how often each quantile was
being sampled (a perfectly characterized system would result
in uniform sampling of all quantiles, as explained above).

ρ(x|σ x) = N(µ∗
x,σ x)

ρ(σ x) = N(σ x,prior,σ σ,x)
(16)

Figure1 shows Q–Q plots for the HB and NHB cases. When
the assumed a priori emissions uncertainty was too con-
strained and not allowed to adjust in the inversion, the re-
sult was a greater sampling of the tails of the distribution.
When the hyper-parameter was included, the estimated dis-
tribution shifted towards the 1: 1 line, indicating a better rep-
resentation of the true distribution. A similar situation was
observed when the assumed uncertainty was too large, re-
flecting a posterior distribution that sampled the middle of
the distribution more frequently than expected. Inclusion of
the hyper-parameter again resulted in a shift toward the 1: 1
line and a better characterization of the true distribution. The
results of this pseudo-data experiment illustrate the ways in
which the hierarchical method can reduce the effect of errors
in our assumptions about the uncertainties governing the sys-
tem. Similar results were found in experiments testing the ef-
fect of incorrect assumptions about model-measurement un-
certainty. An important feature of the HB framework is that
the posterior emissions PDF is less sensitive to assumptions
about the hyper-parameters governing the a priori emissions
PDF than if direct assumptions were made about this PDF,
as is the case in a NHB framework. This is because, in a HB
framework, the parameters governing the a priori emissions
PDF are themselves informed by the data.

Atmos. Chem. Phys., 14, 3855–3864, 2014 www.atmos-chem-phys.net/14/3855/2014/
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Fig. 1. Quantile–quantile (Q–Q) plots of a hierarchical Bayesian
inversion (red) and a non-hierarchical Bayesian inversion (blue) in
which a priori emissions uncertainties used in the inversion were
(a) smaller than the true uncertainty (over-confident) and(b) larger
than the true uncertainty (under-confident).

3 Case study: regional SF6 emissions

3.1 Inversion setup

We use the above methodology to derive monthly regional
SF6 emissions and boundary conditions for the regions
around four AGAGE stations, monthly model-measurement
uncertainties, monthly means and standard deviations of
the a priori emissions PDFs and monthly autocorrelation
timescales. Model-measurement uncertainties were calcu-
lated for two time periods each month: daytime (approx.
06:00–18:00 local time of each station) and nighttime (ap-
prox. 18:00–06:00), in order to investigate the common as-
sumption that uncertainties at night are larger than those dur-
ing the day. We have chosen a monthly estimation timescale,
but in principle any resolution can be used.

High-frequency measurements used in this study are dry
air SF6 mole fractions from the AGAGE stations at Mace
Head, Ireland; Trinidad Head, USA; Cape Grim, Aus-
tralia; and Gosan, South Korea, for the period of January–
December 2012 (Prinn et al., 2000; Rigby et al., 2010).
Gosan measurements from the summer period were excluded

due to the complexities induced by frequently shifting sam-
pling of both northern and southern hemispheric background
air. All measurements were made on the Medusa GC-MS
system and were calibrated on the Scripps Institution of
Oceanography (SIO) – 2005 scale (Miller et al., 2008). Mea-
surements were three hourly averages, which is the temporal
resolution of the model sensitivity output.

The UK Met Office’s Lagrangian Particle Dispersion
Model (LPDM), NAME, simulates atmospheric transport by
following particles backwards in time from the measurement
station. NAME has been used in previous studies for mod-
eling trace gas transport at various sites (O’Doherty et al.,
2004; Manning et al., 2011; Ganesan et al., 2013). NAME
directly outputs the sensitivity of measurements to surface
emissions by tracking the mass of particles and time spent in
the lower 100 m of the model over the duration of the sim-
ulation. These model-derived sensitivities are referred to as
“air histories”. For each site modeled here, the Met Office’s
Unified Model (UM) was used at 0.352◦

× 0.234◦ horizon-
tal resolution and at 3 h temporal resolution. Particles were
followed backwards in time for 20 days. Computational do-
mains were chosen to be large enough to model the trans-
port of pollutants from important source regions to each site
as well as to allow for the assumption that boundary con-
ditions to the LPDM domain do not vary significantly over
the 20-day period. All air histories were generated with the
release of particles from a 100 m column over the model sur-
face. Grid cells were aggregated into approximately 20 re-
gions over each domain following the methodology ofRigby
et al. (2011). Regions were aggregated from grid cells as
a function of a priori emissions and average sensitivity so
that grid cells with high a priori emissions and/or high sensi-
tivity would be estimated at higher resolution than those with
low a priori emissions and/or low sensitivity.

Various methods have been used to determine boundary
conditions to LPDM domains (Stohl et al., 2009; Manning
et al., 2011; Rigby et al., 2011). In this application, bound-
ary conditions were assumed to be constant over each month
and were solved in the inversion as the part of the simulated
mole fractions that were not accounted for by the 20-day air
histories (i.e., emissions from farther back in time).

We follow the hierarchical system outlined by
Eqs. (7)–(13). In this setup,µx,prior was chosen to be
the natural logarithm of 2008 values from the EDGAR v4.2
(henceforth referred to as EDGAR) database extrapolated to
2012 based on the linear trend for the inversion domain from
2004 to 2008 (JRC/PBL, 2011). These trends were assumed
to be 2.8 % per year growth in Europe, 0.6 % per year growth
in North America, 3.4 % per year growth in Oceania and
11 % per year growth in East Asia. Prior a priori emissions
uncertainty,σ x,prior, was chosen as the value that resulted
in 68 % of the lognormal PDF contained between 50 and
150 % of µx,prior (similar to regional uncertainties used in
Rigby et al., 2010). Prior model-measurement uncertainty,
σ y,prior, was chosen to be the natural logarithm of the sum

www.atmos-chem-phys.net/14/3855/2014/ Atmos. Chem. Phys., 14, 3855–3864, 2014
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Fig. 2. Median 2012 SF6 emissions for regions around(a) Mace
Head, Ireland;(b) Trinidad Head, USA;(c) Gosan, South Ko-
rea; and(d) Cape Grim, Australia. Derived emissions were re-
distributed from the aggregated regions solved for in the inversion
by assuming the distribution of EDGAR emissions.

of the instrument uncertainty and the uncertainty associated
with propagating the calibration scale, each assumed to be
0.05 pmolmol−1. We did not include a prior estimate of
the model representation error in the hierarchical inversions
and allowed the inversion the flexibility to deduce this
uncertainty. In the comparable inversions performed without
the hierarchical method, we investigated the effect of
including or not including a model representation error equal
to the standard deviation of daily measurements. The mean
a priori autocorrelation timescale,τprior, was assumed to be
7 days, which is an approximate timescale of synoptic-scale
meteorological events. Prior baseline values were assumed
to be the minimum measured value during the month with
an uncertainty of 3 %.

Uncertainties in these hyper-parameters,σµ,x,prior,
σ σ,x,prior and σ σ,y,prior, were calculated as the values that
resulted in 68 % of the PDF contained between 50 and 150 %
of µx,prior, σ x,prior andσ y,prior, respectively.

3.2 Results and discussion

We present median 2012 SF6 emissions for the regions
around four AGAGE stations, monthly boundary conditions,
diurnal model-measurement uncertainty and autocorrelation
timescales. Median posterior emissions are shown in Fig.2
and are tabulated in Table1. Deviations of these emissions
from the prior are presented in Fig.3. The domain for which

Table 1.National SF6 emissions for 2012 derived using the hierar-
chical Bayesian method for the regions surrounding four AGAGE
stations. The fraction of the country for which emissions are derived
(i.e., fraction of EDGAR emissions contained within the domains
shown in Fig. 2) is tabulated along with 50th (median), 16th and
84th percentiles of the posterior emissions PDF.

Country Country Emissions
fraction (%) (Mgyr−1)

Q50 Q16 Q84

China 75 1576 1259 2107
Germany 100 348 264 455
South Korea 100 278 195 418
USA 21 269 193 407
Japan 96 242 154 416
France 100 61 40 90
UK 100 21 13 32
Australia 80 14 8 23

emissions are presented is smaller than the inversion domain
but represents the region that the measurement station is most
sensitive toward. Figure4 presents national emissions de-
rived from the HB inversion along with emissions derived
from two NHB inversions that use the same PDFs and ei-
ther include or exclude a model representation error. Uncer-
tainties reflect the 16th to 84th percentiles of the posterior
emissions PDFs to show consistency with previous studies
citing 1σ uncertainties of Gaussian distributions. The results
of the HB inversion show that (1) SF6 emissions from the
UK, France and Germany have deceased from the scaled
EDGAR emissions and are also smaller than 2008 EDGAR
emissions; (2) East Asian SF6 emissions have decreased
from scaled EDGAR values but have increased compared
to 2008 EDGAR emissions; (3) emissions from the western
coast of North America have largely decreased from 2008
EDGAR emissions; (4) Australian emissions have approxi-
mately remained the same as the scaled EDGAR emissions.
In comparison to the 2007–2009 estimates made inRigby
et al. (2011), there are some statistically significant differ-
ences. In particular, the emissions from South Korea derived
in this study are lower; however, emissions from Asia were
shown through the sensitivity studies performed inRigby
et al. (2011) to be highly sensitive to inversion parameters,
such as measurement averaging period.

To compare derived emissions and uncertainties between
the HB and NHB methods, two NHB inversions were run for
each site: one in which a model representation error was in-
cluded and assumed to be the standard deviation of measure-
ments each day and one in which no model representation
error was used. Without including a model representation
error, emissions become unrealistically large for East Asian
countries due to the significantly elevated measurements that
are not captured by the model and prior. Uncertainties on
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Fig. 3. Difference between derived 2012 SF6 emissions and the
scaled EDGAR emissions for regions around(a) Mace Head, Ire-
land; (b) Trinidad Head, USA;(c) Gosan, South Korea; and(d)
Cape Grim, Australia. Positive differences are shown by the red log-
arithmic color map and negative differences by the blue logarithmic
color map.

these emissions are likely too small, owing to the underes-
timated model-measurement uncertainty. In previous stud-
ies, methods such as statistical filtering have been used to
remove measurements that cannot be resolved by the model
prior to the inversion to prevent unrealistic emissions from
being derived (Manning et al., 2011). When a model rep-
resentation error was included in the NHB inversion, emis-
sions substantially decreased in East Asia and became more
consistent with those derived in previous East Asian stud-
ies, stressing the importance of properly accounting for the
model-measurement uncertainty (Vollmer et al., 2009; Kim
et al., 2010; Li et al., 2011; Rigby et al., 2011; Fang et al.,
2013).

In the HB inversion, emissions uncertainties are gener-
ally larger than those derived in the NHB inversions. These
results suggest that the HB method is able to account for
a larger space of uncertainties in the inversion and de-
rive emissions uncertainties that are likely more represen-
tative of the true uncertainties in the system. To investi-
gate this claim, we examine Chinese emissions and uncer-
tainties derived in five previous studies between 2006 and
2012. These studies derived 0.8 (0.5–1.1) Ggyr−1 in Vollmer
et al. (2009), 1.3 (0.9–1.7) Ggyr−1 in Kim et al. (2010)
and 1.2 (0.9–1.7) Ggyr−1 in Li et al. (2011) for 2006–2008,
2.3 (2.1–2.5) inRigby et al.(2011) for 2007–2009 and 2.8
(2.3–3.3) Ggyr−1 in Fang et al.(2013) for 2012. For the re-
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Fig. 4. National emissions derived using three methods: (1) hi-
erarchical Bayesian (HB) inversion (blue); (2) non-hierarchical
Bayesian inversion (NHB) with model-measurement uncertainties
that include a model error (red); and (3) non-hierarchical Bayesian
inversion in which no model error was included (green). A priori
emissions are shown as black bars, and uncertainties reflect the 16th
to 84th percentiles of the posterior national emissions. The asterisk
(*) refers to countries in which emissions were derived for only
a fraction of the country. For clarity, the inset shows a magnified
view of countries with relatively smaller emissions.

sults obtained for the period 2006–2009, these studies pro-
duced statistically different emissions, likely indicating that
the uncertainty analyses are not robust. These five studies
used various methods by which they assessed uncertainties
in emissions, making it difficult to compare uncertainties be-
tween each study.Vollmer et al.(2009), Kim et al.(2010) and
Fang et al.(2013) derived emissions uncertainties by exam-
ining an ensemble of inversions with varying a priori emis-
sions and a priori emissions uncertainties. These sensitivity
tests were used to quantify the effect of incorrect assump-
tions about a priori emissions and a priori emissions uncer-
tainties, as our study aims to do; however each of these inver-
sion ensemble members cannot be considered independent,
and the resulting uncertainties may not be statistically robust
or fully propagated through to emissions.Rigby et al.(2011)
presented uncertainties derived solely from the Bayesian in-
version, which is the likely the cause for the much smaller
uncertainties than the other studies. The results of the HB in-
version presented in this study show 2012 Chinese emissions
to be 2.1 (1.7–2.8) Ggyr−1 (derived value scaled by country
fraction), which is statistically consistent with the recent re-
sults ofFang et al.(2013). While our derived uncertainties
are similar to some of these studies, we propose that the un-
certainty quantification outlined in this work is more statisti-
cally justifiable, complete and traceable than those presented
elsewhere.

Derived model-measurement uncertainties for all stations
are shown in Fig.5 and simulated mole fractions and bound-
ary conditions in Fig.6. Uncertainties at Mace Head are gen-
erally lower than the a priori value used, suggesting that the
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Fig. 5. Monthly 2012 SF6 model-measurement uncertainties de-
rived for daytime observations (blue) and nighttime observations
(red) with error bars corresponding to 16th to 84th percentiles of
the posterior distributions. The a priori value is shown by the black
line.

model does well at representing this site. During July, a large
pollution event is observed but is not captured by the model.
The result is that measurements during this month have larger
derived uncertainties and are therefore weighted less promi-
nently in the inversion. Though a monthly timescale was used
in this case study for deriving model-measurement uncertain-
ties, solving for weekly or daily values would result in fewer
observations being strongly de-weighted in the inversion.
While some previous studies have filtered outlier measure-
ments prior to the inversion through various methods, the HB
method is less sensitive to these outliers. At Trinidad Head
there is less consistency between the model and measure-
ments than at Mace Head, leading to model-measurement
uncertainties that are almost twice as large as those derived
for Mace Head. These uncertainties are significantly higher
in the latter part of the year (August–December), when more
regional pollution is intercepted. At this time, the nighttime
uncertainties are considerably larger than the daytime un-
certainties, and one possible cause could be from errors in
the model that have diurnal characteristics (e.g., sea breezes
that are not captured). Uncertainties at Gosan are an order of
magnitude larger than those derived at any other site. While
the model captures the timing of many of the pollution events
at this site, the sizes of the pollution events are considerably
larger than predicted by the model and prior. This suggests
that there could be emissions in close proximity to the station
that are not captured by the model at the resolution used or
that the model is under-representing the sensitivity to surface
emissions. Uncertainties at Cape Grim are the smallest of all
of the stations modeled here, owing to the measurement of
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Fig. 6. Simulated 2012 SF6 mole fractions (red line) and observa-
tions (blue dot) at each AGAGE station. Note that each station is
plotted with a differenty axis range. Shading represents the 16th
to 84th percentiles of the posterior model-measurement uncertainty
distributions derived in the inversion. Black circles indicate the
baseline values derived at each month.

mostly baseline air and very small pollution events. Notably,
the derived model-measurement uncertainties at Cape Grim
decreased in the second half of the year when improved in-
strumentation was installed, which resulted in better instru-
mental precision. For most of the sites, we have found that
there was not a clear advantage to using daytime observa-
tions only. Derived autocorrelation timescales (not shown)
were between 6 h and 1 day for each month and station and
are similar to those presented in other studies (Berchet et al.,
2013).

4 Conclusions

We present an application of a hierarchical Bayesian method
for trace gas inversions. We show that the inclusion of
“hyper-parameters” to represent the a priori emissions PDF,
model-measurement uncertainty and measurement autocor-
relation timescale results in a more complete quantification
of emissions uncertainties over traditional inverse methods
that rely heavily on expert judgment.

Using the hierarchical method, we have estimated emis-
sions of SF6 for regions around four AGAGE stations and
hyper-parameters for each site. The emissions uncertainties
derived using the hierarchical method are generally larger
than those derived in traditional inversions as they account
for a broader space of uncertainties in the system, includ-
ing random aggregation, representation and structural errors.
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We show that model error is a significant contribution to
model-measurement uncertainties at some sites, for example
Gosan, without which, unrealistically large emissions would
be derived with small uncertainties. The large discrepancy
between the model and observations at this site results in
the derivation of large model-measurement uncertainties and
accordingly larger emissions uncertainties than those result-
ing from a standard Bayesian inversion. Similarly at Trinidad
Head, derived uncertainties are larger than expected, owing
to poor model fit, which results in larger emissions uncer-
tainties than the comparable non-hierarchical inversion. In
contrast, the generally good agreement between observations
and model at Mace Head and Cape Grim results in a model-
measurement uncertainty being derived that is smaller than
the initial a priori value. Each of these findings is consistent
with our expectations about the uncertainty characteristics of
model performance at these sites but have been derived using
minimal expert judgment.
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