60 research outputs found

    YAP1 Recruits c-Abl to Protect Angiomotin-Like 1 from Nedd4-Mediated Degradation

    Get PDF
    Tissue development and organ growth require constant remodeling of cell-cell contacts formed between epithelial cells. The Hippo signaling cascade curtails organ growth by excluding the transcriptional co-activator Yes Associated Protein 1 (YAP1) from the nucleus. Angiomotin family members recruit YAP1 to tight junctions [1], but whether YAP1 plays a specific role outside of the nucleus is currently unknown.The present study demonstrates that the E3 ubiquitin ligase Nedd4.2 targets Angiomotin-like 1 (AMOTL1), a family member that promotes the formation of epithelial tight junctions, for ubiquitin-dependent degradation. Unexpectedly, YAP1 antagonizes the function of Nedd4.2, and protects AMOTL1 against Nedd4.2-mediated degradation. YAP1 recruits c-Abl, a tyrosine kinase that binds and phosphorylates Nedd4.2 on tyrosine residues, thereby modifying its ubiquitin-ligase activity.Our results uncover a novel function for cytoplasmic YAP1. YAP1 recruits c-Abl to protect AMOTL1 against Nedd4.2-mediated degradation. Thus, YAP1, excluded from the nucleus, contributes to the maintenance of tight junctions

    Mitochondrial Dysfunction Links Ceramide Activated HRK Expression and Cell Death

    Get PDF
    Cell death is an essential process in normal development and homeostasis. In eyes, corneal epithelial injury leads to the death of cells in underlying stroma, an event believed to initiate corneal wound healing. The molecular basis of wound induced corneal stromal cell death is not understood in detail. Studies of others have indicated that ceramide may play significant role in stromal cell death following LASIK surgery. We have undertaken the present study to investigate the mechanism of death induced by C6 ceramide in cultures of human corneal stromal (HCSF) fibroblasts.Cultures of HCSF were established from freshly excised corneas. Cell death was induced in low passage (p<4) cultures of HCSF by treating the cells with C6 ceramide or C6 dihydroceramide as a control. Cell death was assessed by Live/Dead cell staining with calcein AM and ethidium homodimer-1 as well as Annexin V staining, caspase activation and TUNEL staining Mitochondrial dysfunction was assessed by Mito Sox Red, JC-1 and cytochrome C release Gene expression was examined by qPCR and western blotting.Our data demonstrate ceramide caused mitochondrial dysfunction as evident from reduced MTT staining, cyto c release from mitochondria, enhanced generation of ROS, and loss in mitochondrial membrane potential (ΔΨm). Cell death was evident from Live -Dead Cell staining and the inability to reestablish cultures from detached cells. Ceramide induced the expression of the harikari gene(HRK) and up-regulated JNK phosphorylation. In ceramide treated cells HRK was translocated to mitochondria, where it was found to interact with mitochondrial protein p32. The data also demonstrated HRK, p32 and BAD interaction. Ceramide-induced expression of HRK, mitochondrial dysfunction and cell death were reduced by HRK knockdown with HRK siRNA.Our data document that ceramide is capable of inducing death of corneal stromal fibroblasts through the induction of HRK mediated mitochondria dysfunction

    S100A7 and the progression of breast cancer

    Get PDF
    The S100 gene family comprises more than 20 members whose protein sequences encompass at least one EF-hand Ca(2+ )binding motif. The expression of individual family members is not ubiquitous for all tissues and there appears to be an element of tissue-specific expression. Molecular analysis of breast tumors has revealed that several S100s, including S100A2, S100A4 and S100A7, exhibit altered expression levels during breast tumorigenesis and/or progression. Subsequent studies have started to describe a functional role for these S100 proteins as well as their mechanism of action and the biochemical pathways they modify. The present review outlines what is known about S100A7 in breast cancer and summarizes the need to better understand the importance of this protein in breast cancer

    HGF-Induced PKCζ Activation Increases Functional CXCR4 Expression in Human Breast Cancer Cells

    Get PDF
    The chemokine receptor CXCR4 and its ligand CXCL12 have been shown to mediate the metastasis of many malignant tumors including breast carcinoma. Interaction between hepatocyte growth factor (HGF) and the Met receptor tyrosine kinase mediates development and progression of cancers. HGF is able to induce CXCR4 expression and contributes to tumor cell invasiveness in breast carcinoma. However, the mechanism of the CXCR4 expression modulated by c-Met-HGF axis to enhance the metastatic behavior of breast cancer cells is still unclear. In this study, we found that HGF induced functional CXCR4 receptor expression in breast cancer cells. The effect of HGF was specifically mediated by PKCζ activity. After transfection with PKCζ-siRNA, the phosphorylation of PKCζ and CXCR4 was abrogated in breast cancer cells. Interference with the activation of Rac1, a downstream target of HGF, prevented the HGF-induced increase in PKCζ activity and CXCR4 levels. The HGF-induced, LY294002-sensitive translocation of PKCζ from cytosol to plasma membrane indicated that HGF was capable of activating PKCζ, probably via phosphoinositide (PI) 3-kinases. HGF treatment also increased MT1-MMP secretion. Inhibition of PKCζ, Rac-1 and phosphatidylinositol 3-kinase may attenuate MT1-MMP expression in cells exposed to HGF. Functional manifestation of the effects of HGF revealed an increased ability for migration, chemotaxis and metastasis in MDA-MB-436 cells in vitro and in vivo. Our findings thus provided evidence that the process of HGF-induced functional CXCR4 expression may involve PI 3-kinase and atypical PKCζ. Moreover, HGF may promote the invasiveness and metastasis of breast tumor xenografts in BALB/c-nu mice via the PKCζ-mediated pathway, while suppression of PKCζ by RNA interference may abrogate cancer cell spreading

    Association between diabetes mellitus and active tuberculosis: A systematic review and meta-analysis.

    Get PDF
    The burgeoning epidemic of diabetes mellitus (DM) is one of the major global health challenges. We systematically reviewed the published literature to provide a summary estimate of the association between DM and active tuberculosis (TB). We searched Medline and EMBASE databases for studies reporting adjusted estimates on the TB-DM association published before December 22, 2015, with no restrictions on region and language. In the meta-analysis, adjusted estimates were pooled using a DerSimonian-Laird random-effects model, according to study design. Risk of bias assessment and sensitivity analyses were conducted. 44 eligible studies were included, which consisted of 58,468,404 subjects from 16 countries. Compared with non-DM patients, DM patients had 3.59-fold (95% confidence interval (CI) 2.25-5.73), 1.55-fold (95% CI 1.39-1.72), and 2.09-fold (95% CI 1.71-2.55) increased risk of active TB in four prospective, 16 retrospective, and 17 case-control studies, respectively. Country income level (3.16-fold in low/middle-vs. 1.73-fold in high-income countries), background TB incidence (2.05-fold in countries with >50 vs. 1.89-fold in countries with ≤50 TB cases per 100,000 person-year), and geographical region (2.44-fold in Asia vs. 1.71-fold in Europe and 1.73-fold in USA/Canada) affected appreciably the estimated association, but potential risk of bias, type of population (general versus clinical), and potential for duplicate data, did not. Microbiological ascertainment for TB (3.03-fold) and/or blood testing for DM (3.10-fold), as well as uncontrolled DM (3.30-fold), resulted in stronger estimated association. DM is associated with a two- to four-fold increased risk of active TB. The association was stronger when ascertainment was based on biological testing rather than medical records or self-report. The burgeoning DM epidemic could impact upon the achievements of the WHO "End TB Strategy" for reducing TB incidence

    Reporting Recommendations for Tumor Marker Prognostic Studies (REMARK): Explanation and Elaboration

    Get PDF
    The REMARK “elaboration and explanation” guideline, by Doug Altman and colleagues, provides a detailed reference for authors on important issues to consider when designing, conducting, and analyzing tumor marker prognostic studies

    ENSO Drives interannual variation of forest woody growth across the tropics

    Get PDF
    Meteorological extreme events such as El Niño events are expected to affect tropical forest net primary production (NPP) and woody growth, but there has been no large-scale empirical validation of this expectation. We collected a large high–temporal resolution dataset (for 1–13 years depending upon location) of more than 172 000 stem growth measurements using dendrometer bands from across 14 regions spanning Amazonia, Africa and Borneo in order to test how much month-to-month variation in stand-level woody growth of adult tree stems (NPPstem) can be explained by seasonal variation and interannual meteorological anomalies. A key finding is that woody growth responds differently to meteorological variation between tropical forests with a dry season (where monthly rainfall is less than 100 mm), and aseasonal wet forests lacking a consistent dry season. In seasonal tropical forests, a high degree of variation in woody growth can be predicted from seasonal variation in temperature, vapour pressure deficit, in addition to anomalies of soil water deficit and shortwave radiation. The variation of aseasonal wet forest woody growth is best predicted by the anomalies of vapour pressure deficit, water deficit and shortwave radiation. In total, we predict the total live woody production of the global tropical forest biome to be 2.16 Pg C yr−1, with an interannual range 1.96–2.26 Pg C yr−1 between 1996–2016, and with the sharpest declines during the strong El Niño events of 1997/8 and 2015/6. There is high geographical variation in hotspots of El Niño–associated impacts, with weak impacts in Africa, and strongly negative impacts in parts of Southeast Asia and extensive regions across central and eastern Amazonia. Overall, there is high correlation (r = −0.75) between the annual anomaly of tropical forest woody growth and the annual mean of the El Niño 3.4 index, driven mainly by strong correlations with anomalies of soil water deficit, vapour pressure deficit and shortwave radiation
    corecore