204 research outputs found

    Rock physics investigation of seismic wave absorption in reservoir rocks

    Get PDF
    This research provides insight into the process of pore- fluid induced absorption which is important for absorption compensation and seismic image enhancement. The absorptive property of a medium is described by the rock inverse quality factor ( ), perturbational forward modeling is conducted by varying saturation and estimating the inverse quality factor using first principles of rock inelastic properties and modeling seismic absorption in rock with partial gas saturation as commonly encountered in hydrocarbon exploration. The response of a visco-elastic rock depends on the frequency of the propagating seismic energy. The difference between modulus estimated at high and low frequencies is translated to the coefficient of absorption (or inverse quality factor). Absorption estimated at 0.4 irreducible water saturation (0.6 gas saturation) is higher than 0.8 irreducible water saturation (0.2 gas saturation). The higher the gas saturation, the higher the absorption, and the poorer the seismic image. The signature of gas induced absorption in the selected earth model are the increase time –thickness in the reservoir interval, large contrast in the top and base amplitude, pulse broadening and wavelet distortion. In hydrocarbon reservoir evaluation, seismic absorption can be used to interpret for fluid units. Information about seismic absorption can also be used, by means of absorption compensation, to enhance seismic data resolution.KEYWORDS: Saturation, Absorption, Dispersion, Inverse Quality Factor, Anelasti

    Quantifying offshore fore-arc deformation and splay-fault slip using drowned Pleistocene shorelines, Arauco Bay, Chile

    Get PDF
    IndexaciĂłn: Web of Science; Scopus.Most of the deformation associated with the seismic cycle in subduction zones occurs offshore and has been therefore difficult to quantify with direct observations at millennial timescales. Here we study millennial deformation associated with an active splay-fault system in the Arauco Bay area off south central Chile. We describe hitherto unrecognized drowned shorelines using high-resolution multibeam bathymetry, geomorphic, sedimentologic, and paleontologic observations and quantify uplift rates using a Landscape Evolution Model. Along a margin-normal profile, uplift rates are 1.3 m/ka near the edge of the continental shelf, 1.5 m/ka at the emerged Santa MarĂ­a Island, −0.1 m/ka at the center of the Arauco Bay, and 0.3 m/ka in the mainland. The bathymetry images a complex pattern of folds and faults representing the surface expression of the crustal-scale Santa MarĂ­a splay-fault system. We modeled surface deformation using two different structural scenarios: deep-reaching normal faults and deep-reaching reverse faults with shallow extensional structures. Our preferred model comprises a blind reverse fault extending from 3 km depth down to the plate interface at 16 km that slips at a rate between 3.0 and 3.7 m/ka. If all the splay-fault slip occurs during every great megathrust earthquake, with a recurrence of ~150–200 years, the fault would slip ~0.5 m per event, equivalent to a magnitude ~6.4 earthquake. However, if the splay-fault slips only with a megathrust earthquake every ~1000 years, the fault would slip ~3.7 m per event, equivalent to a magnitude ~7.5 earthquake. ©2017. American Geophysical Union.http://onlinelibrary.wiley.com/doi/10.1002/2016JB013339/epd

    Convolutional Neural Network for Seismic Phase Classification, Performance Demonstration over a Local Seismic Network

    Get PDF
    Over the past two decades, the amount of available seismic data has increased significantly, fueling the need for automatic processing to use the vast amount of information contained in such data sets. Detecting seismicity in temporary aftershock networks is one important example that has become a huge challenge because of the high seismicity rate and dense station coverage. Additionally, the need for highly accurate earthquake locations to distinguish between different competing physical processes during the postseismic period demands even more accurate arrival‐time estimates of seismic phase. Here, we present a convolutional neural network (CNN) for classifying seismic phase onsets for local seismic networks. The CNN is trained on a small dataset for deep‐learning purposes (411 events) detected throughout northern Chile, typical for a temporary aftershock network. In the absence of extensive training data, we demonstrate that a CNN‐based automatic phase picker can still improve performance in classifying seismic phases, which matches or exceeds that of historic methods. The trained network is tested against an optimized short‐term average/long‐term average (STA/LTA) based method (Rietbrock et al., 2012) in classifying phase onsets for a separate dataset of 3878 events throughout the same region. Based on station travel‐time residuals, the CNN outperforms the STA/LTA approach and achieves location residual distribution close to the ones obtained by manual inspection

    A narrowly spaced double-seismic zone in the subducting Nazca plate

    Get PDF
    High-precision relocations of intermediate-depth earthquakes (80–130 km) below the Central Andes reveal a fine-scale double-layered Wadati-Benioff zone (WBZ). Upper and lower band of seismicity are separated by about 9 km and occur at the top of the oceanic crust and in the uppermost oceanic mantle, respectively. Analysis of focal mechanisms and waveform similarities indicate that fluid processes are causing the events. Earthquakes in the oceanic crust occur on pre-existing normal faults due to hydraulic embrittlement from metamorphic dehydration, and on subvertical faults that connect the two layers in a narrow depth range. Extensional faulting predominates in both layers, indicating that slab pull forces are the dominant stress source superseding possible unbending forces in this segment of the Nazca plate

    Seismic anisotropy in the Sumatra subduction zone

    Get PDF
    An important tool for understanding deformation occurring within a subduction zone is the measurement of seismic anisotropy through observations of shear wave splitting (SWS). In Sumatra, two temporary seismic networks were deployed between December 2007 and February 2009, covering the fore arc between the fore-arc islands to the back arc. We use SKS and local SWS measurements to determine the type, amount, and location of anisotropy. Local SWS measurements from the fore-arc islands exhibit trench-parallel fast directions which can be attributed to shape preferred orientation of cracks/fractures in the overriding sediments. In the Sumatran Fault region, the predominant fast direction is fault/trench parallel, while in the back-arc region it is trench perpendicular. The trench-perpendicular measurements exhibit a positive correlation between delay time and raypath length in the mantle wedge, while the fault-parallel measurements are similar to the fault-parallel fast directions observed for two crustal events at the Sumatran Fault. This suggests that there are two layers of anisotropy: one due to entrained flow within the mantle wedge and a second layer within the overriding crust due to the shear strain caused by the Sumatran Fault. SKS splitting results show a NNW-SSE fast direction with delay times of 0.8–3.0 s. The fast directions are approximately parallel to the absolute plate motion of the subducting Indo-Australian Plate. The small delay times exhibited by the local SWS (0.05–0.45 s), in combination with the large SKS delay times, suggest that the anisotropy generating the teleseismic SWS is dominated by entrained flow in the asthenosphere below the slab

    The origin of overpotential in lithium-mediated nitrogen reduction

    Get PDF
    The verification of the lithium-mediated nitrogen reduction system in 2019 has led to an explosion in the literature focussing on improving the metrics of faradaic efficiency, stability, and activity. However, while the literature acknowledges the vast intrinsic overpotential for nitrogen reduction due to the reliance on in situ lithium plating, it has thus far been difficult to accurately quantify this overpotential and effectively analyse further voltage losses. In this work, we present a simple method for determining the Reversible Hydrogen Electrode (RHE) potential in the lithium-mediated nitrogen reduction system. This method allows for an investigation of the Nernst equation and reveals sources of potential losses. These are namely the solvation of the lithium ion in the electrolyte and resistive losses due to the formation of the solid electrolyte interphase. The minimum observed overpotential was achieved in a 0.6 M LiClO4, 0.5 vol% ethanol in tetrahydrofuran electrolyte. This was −3.59 ± 0.07 V vs. RHE, with a measured faradaic efficiency of 6.5 ± 0.2%. Our method allows for easy comparison between the lithium-mediated system and other nitrogen reduction paradigms, including biological and homogeneous mechanisms

    The 2010<i>M</i><sub>w</sub>8.8 Maule, Chile earthquake: Nucleation and rupture propagation controlled by a subducted topographic high

    Get PDF
    Knowledge of seismic properties in an earthquake rupture zone is essential for understanding the factors controlling rupture dynamics. We use data from aftershocks following the Maule earthquake to derive a three-dimensional seismic velocity model of the central Chile forearc. At 36°S, we find a highvp (&gt;7.0 km/s) and high vp/vs(?1.89) anomaly lying along the megathrust at 25 km depth, which coincides with a strong forearc Bouguer gravity signal. We interpret this as a subducted topographic high, possibly a former seamount on the Nazca slab. The Maule earthquake nucleated at the anomaly's updip boundary; yet high co-seismic slip occurred where the megathrust is overlain by lower seismic velocities. Sparse aftershock seismicity occurs within this structure, suggesting that it disrupts normal interface seismogenesis. These findings imply that subducted structures can be conducive to the nucleation of large megathrust earthquakes, even if they subsequently hinder co-seismic slip and aftershock activity

    The Devastating 2022 M6.2 Afghanistan Earthquake: Challenges, Processes, and Implications

    Get PDF
    On June 21st, a Mw6.2 earthquake struck the Afghan-Pakistan-border-region, situated within the India-Asia collision. Thousand thirty-nine deaths were reported, making the earthquake the deadliest of 2022. We investigate the event\u27s rupture processes by combining seismological and geodetic observations, aiming to understand what made it that fatal. Our Interferometric Synthetic Aperture Radar-constrained slip-model and regional moment-tensor inversion, confirmed through field observations, reveal a sinistral rupture with maximum slip of 1.8 m at 5 km depth on a N20°E striking, sub-vertical fault. We suggest that not only external factors (event-time, building stock) but fault-specific factors made the event excessively destructive. Surface rupture was favored by the rock foliation, coinciding with the fault strike. The distribution of Peak-Ground-Velocity was governed by the sub-vertical fault. Maximum slip was large compared to other events globally and might have resulted in peak-frequencies coinciding with resonance-frequencies of the local buildings and demonstrates the devastating impact of moderate-size earthquakes

    The structure of the Sumatran Fault revealed by local seismicity

    Get PDF
    [1] The combination of the Sunda megathrust and the (strike-slip) Sumatran Fault (SF) represents a type example of slip-partitioning. However, superimposed on the SF are geometrical irregularities that disrupt the local strain field. The largest such feature is in central Sumatra where the SF splits into two fault strands up to 35 km apart. A dense local network was installed along a 350 km section around this bifurcation, registering 1016 crustal events between April 2008 and February 2009. 528 of these events, with magnitudes between 1.1 and 6.0, were located using the double-difference relative location method. These relative hypocentre locations reveal several new features about the crustal structure of the SF. Northwest and southeast of the bifurcation, where the SF has only one fault strand, seismicity is strongly focused below the surface trace, indicating a vertical fault that is seismogenic to ∌15 km depth. By contrast intense seismicity is observed within the bifurcation, displaying streaks in plan and cross-section that indicate a complex system of faults bisecting the bifurcation. In combination with analysis of topography and focal mechanisms, we propose that the bifurcation is a strike-slip duplex system with complex faulting between the two main fault branches
    • 

    corecore