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Abstract 12 

Over the last two decades the amount of available seismic data has increased significantly 13 

fuelling the need for automatic processing to utilize the vast amount of information contained 14 

in such data sets. Detecting seismicity in temporary aftershock networks is one important 15 

example, which has become a huge challenge due to the high seismicity rate and dense 16 

station coverage. Additionally, the need for highly accurate earthquake locations, to 17 

distinguish between different competing physical processes during the post-seismic period, 18 

demands even more accurate arrival time estimates of seismic phase. Here we present a 19 

Convolutional Neural Network (CNN) for classifying seismic phase onsets for local seismic 20 

networks. The CNN is trained on a small dataset for deep-learning purposes (411 events) 21 

detected throughout Northern Chile, typical for a temporary aftershock network. In the 22 

absence of extensive training data, we demonstrate that a CNN based automatic phase 23 

picker can still improve performance in classifying seismic phases, which matches or exceeds 24 

that of historic methods. The trained network is tested against an optimised STA/LTA based 25 

method (Rietbrock et al., 2012), in classifying phase onsets for a separate dataset of 3878 26 

events throughout the same region. Based on station travel time residuals the CNN out-27 

performs the STA/LTA approach an achieves location residual distribution close to the ones 28 

obtained by manual inspection. 29 

  30 
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Introduction 31 

Accurate detection of earthquake signals generated within the Earth is a fundamental and 32 

challenging task in seismology. Traditionally, the optimal method of identifying seismic 33 

phases involves a trained analyst manually inspecting seismograms and determining 34 

individual phase arrival times. Continuous developments in data acquisition and storage have 35 

resulted in vast, unprecedented increases in the volume of available seismic data. For such 36 

large-scale datasets, traditional manual picking methods are rendered unfeasible due to the 37 

required investment of time and resources; in addition, manual picking incorporates the 38 

subjectivity of different analysts which can bias pick accuracy. Further development of reliable 39 

automated picking methods are therefore essential to assist seismologists in their efforts to 40 

process large-scale datasets.  41 

Historic Auto-pickers 42 

The pressing need for a reliable automatic phase picker is not new, and numerous methods 43 

have been proposed to detect P- and S- wave onsets automatically. The most commonly 44 

used method for automatic phase picking is still the STA/LTA approach (Allen, 1978; Allen, 45 

1982; Earle & Shearer, 1994), which measures the ratio between the energy of the seismic 46 

signal over a short-term and a long-term window; any values of the STA/LTA ratio above a 47 

defined cut-off threshold represent a phase arrival. Baer & Kradolfer (1987) modified the 48 

STA/LTA incorporating an envelope function and a dynamic signal threshold into the 49 

characteristic function. There are numerous other approaches, including those based upon 50 

higher-order statistics (Saragiotis et al., 2002, 2004; Küperkock et al., 2010), autoregressive 51 

methods (Leonard & Kennet, 1999; Sleeman & Van Eck, 1999; Rastin et al., 2013), shallow 52 

neural networks (Wang & Teng, 1995; Dai & MacBeth, 1995, 1997; Zhao & Takano, 1999; 53 

Gentili & Michelini, 2006), methods which utilise wave polarisation (Ross & Ben-Zion, 2014; 54 

Baillard et al., 2014), and those which utilise pickers in tandem (Nippress et al., 2010). Whilst 55 
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there has been extensive development of auto-picker routines, automated picking algorithms 56 

cannot currently match the accuracy of an experienced analyst. This is attributed to the 57 

complex nature of earthquake source and propagation, with multiple physical processes 58 

affecting the wavefield; variations in attenuation, noise-interference, source mechanism and 59 

energy-partitioning at interfaces all affect the observed waveform.  60 

Why historic auto-picking routines are typically inferior compared to human analysts 61 

Traditional automated picking methods are manually optimized for individual networks and/or 62 

even on a station by station basis, fine tuning the ‘characteristic functions’ to distinguish body-63 

wave phases from noise. E.g., triggers can be based on the frequency content of a trace, 64 

kurtosis, or some other combination of manually extracted features. One common problem 65 

is that that S-wave phases are more difficult to pick as their onset is often masked by the 66 

coda of P-waves and manually extracted features will often struggle to identify the S-wave in 67 

such instances (Gomberg et al., 1990). 68 

Advancements in deep-learning  69 

Rather than extracting individual features, deep-learning based algorithms focus on learning 70 

representations of data, where multiple layers of processing provide varying levels of 71 

abstraction (LeCun et al., 2015; Schmidhuber., 2015). Recent advancements in deep-72 

learning techniques have yielded a suite of procedures which demonstrate ‘super-human’ 73 

performance when applied to solve problems in fields ranging from computer vision 74 

(Krizhevsky et al., 2012), to speech-recognition (Hinton et al., 2012). Convolutional Neural 75 

Networks (CNNs), are a form supervised machine learning that achieve exceptional results 76 

in classifying multi-dimensional inputs such as images, videos, and audio (Krizhevsky et al., 77 

2012; Karpathy et al., 2014; LeCun & Bengio, 1995). CNNs apply repeated convolutional and 78 

pooling operations to the input data, resulting in a set of learnable filters which automatically 79 

‘engineer’ the appropriate features for classification.  The appropriate features are extracted 80 
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by fine tuning of the network’s internal parameters (or weights), via a computer-based 81 

optimisation process. The intrinsic properties of CNNs make them an ideal method for natural 82 

signal classification (LeCun et al., 2015). Natural signals often demonstrate local connections 83 

between samples, an example being the higher amplitudes observed immediately following 84 

an impulsive phase arrival. The major advantage of a CNN approach is how such features 85 

are then optimised. Shared weights throughout the network results in the systematic 86 

optimisation of decision boundaries to find the best weighted combination of local features to 87 

classify phase onsets. Another major factor behind the success of deep-learning methods is 88 

that the only required input is a large dataset of labelled examples for training. Within the 89 

seismological community, large datasets of labelled data are readily available in the form of 90 

manually picked earthquake catalogues for many regions. We are now starting to see the 91 

adoption of deep-learning based methods to solve problems in seismological processing (e.g. 92 

Perol et al., 2018; Yoon et al., 2015, Ross et al., 2018; Zhu & Berozza, 2018; Titos et al., 93 

2018). Preliminary results indicate such methods can match or even surpass human levels 94 

of performance in seismic phase classification. So far, CNN approaches have been trained 95 

over extensive (~million) catalogues of labelled examples collected over decades (Ross et 96 

al., 2018; Zhu & Berozza, 2018). We now investigate the dependency of the input data on 97 

classification performance by applying a CNN to classify seismic phases, where the network 98 

is trained over a relatively small catalogue of events (~11,000 P & S phase pairs). Can a 99 

relatively simple CNN architecture display similar performance improvements in the absence 100 

of an extensive training dataset? If a feature engineering approach demonstrates 101 

generalisation capabilities when trained over a small local dataset with inherent biases, this 102 

will further validate the potential of deep-learning based methods over traditional techniques 103 

for seismic phase classification.   104 
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Data 105 

The dataset used in training the CNN is a manually picked catalogue of 411 events containing 106 

approximately 11,000 P-/S- phase pairs, located throughout the Iquique region of Northern 107 

Chile. The training catalogue has also been used to perform a minimum 1D velocity inversion 108 

(Woollam et al., 2019). Events occurred between March-May 2014 and are recorded over a 109 

network of 65 broadband and short-period stations distributed throughout Northern Chile and 110 

Southern Peru; all stations use a sampling frequency of 100Hz (Figure 1). 111 

Manual picking of events was performed using Seismic Date eXplorer (SDX) software 112 

http://doree.esc.liv.ac.uk:8080/sdx/. We process the dataset applying a linear detrend. Whilst 113 

the CNN approach is shown to learn the characteristics of P-phases, S-phases, and noise 114 

(Zhu & Beroza, 2018), due to our limited training dataset, the CNN network will only be 115 

presented with a small portion of noise examples. To limit the potential for the CNN to 116 

erroneously identify noise it has not been trained on as phases, and to homogenize the data 117 

set due to different instrumentation; we bandpass filter the data between 2-25 Hz, a frequency 118 

range which lies in the passband of all instruments deployed.  119 

Manual picks are represented probabilistically as a Gaussian function (σ = 1s, Figure 2), 120 

reducing the bias associated with erroneous picks. The σ parameter was determined through 121 

manual parameter testing. Larger σ values resulted in the network acting more as an event 122 

‘detector’ where the output probabilities were not impulsive enough to obtain a definitive 123 

phase-onset. Values lower than 1 second resulted in a high proportion of ‘miss-picks’ as 124 

manual pick errors not captured by the classification vector had a detrimental effect on 125 

engineering the appropriate features for phase classification. The dataset is split into training, 126 

validation and test batches (with ratios of 80:10:10 respectively).  127 

http://doree.esc.liv.ac.uk:8080/sdx/
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Dataset augmentation and training 128 

Deep learning-based classifiers contain a significant number of trainable parameters in the 129 

solution space, therefore, an extremely large number of examples are needed to prevent 130 

overfitting of the training dataset and to enhance generalisation. Our dataset is relatively 131 

small for deep learning purposes. To overcome the limitations associated with a small training 132 

dataset we perform several additional processing steps. Events are scaled by multiplication 133 

of a value drawn from a lognormal distribution, the ends of the segmented event are tapered 134 

to limit impulsive amplitude spikes generated by processing, varying levels of Gaussian noise 135 

are then added to each batch1, resulting in greater variations of signal vs. background noise. 136 

The training events are therefore modified to show a range of arrival types, rather than the 137 

high-magnitude, well-recorded events that are typically seen in a small catalogue of manually 138 

selected earthquakes for further studies. The input window size for the CNN is 6 seconds.  139 

To train the CNN, a given input batch is sequentially windowed with a timestep of 0.4 140 

seconds. The windows are randomly shuffled before being used in training, preventing the 141 

CNN learning any unnecessary temporal order. A small time step is used to increase the total 142 

number of events during training; also, having the network learn to recognise the presence 143 

of phases at any point in the input window will help the network generalise beyond the training 144 

dataset. Formatting the input data in such a way reduces the biases associated with our small 145 

dataset and enhances the capability of the network to pick varying types of arrival.  146 

                                            
1 More information on parameters used to aiding generalisation provided in Data Appendix, section A.1 
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Methodology 147 

Network architecture 148 

The input to the network compromises three one-dimensional windows (𝑥), where each 149 

window samples an individual component. For this given input, the network outputs the 150 

probability of either P-phase, S-phase, or Noise for each time sample within that window 151 

(Figure 4). Probabilities are output by applying the ‘softmax’ or normalised exponential 152 

function to the final layer 153 

 
𝑝(𝑌 = 𝑖|𝑥) =

𝑒𝛼𝑖(𝑥)

∑ 𝑒𝛼𝑗(𝑥)3
𝑗=1

 .   (1) 

Where j = 1,2,3 represents the P-phase, S-phase and Noise classes, 𝛼(x) contains the 154 

associated weights for the final layer.  The input data are passed through repeated 155 

transformations; convolutional operations initially extract the appropriate features to 156 

characterise each class, the extracted features then go through repeated re-sampling stages, 157 

to output per-class probabilities. At each stage, a Rectified Linear Unit (ReLU) activation 158 

function is applied (Nair & Hinton, 2010). The cost function used to train the CNN is given by 159 

the negative log-likelihood 𝑁𝐿𝐿(𝑥, 𝜃). For a multi-class classification problem, where each 160 

class is characterised as a series of discrete probability distributions, 𝑁𝐿𝐿(𝑥, 𝜃) is also termed 161 

the cross-entropy loss function,  162 

 
𝑁𝐿𝐿(𝑥, 𝜃) =  − ∑ ∑ log(𝑝(𝑐𝑘|𝑥𝑛, 𝜃)) .

𝑛−𝑁

𝑛=0

3

𝑘=1

 
(2) 

N represents the total number of training instances, 𝑐𝑘 corresponds to the class label 163 

assigned to the input (𝑥𝑛), and the network weights (𝜃). Eq. 2 is minimised using Adaptive 164 

Moment Estimation (ADAM, Kingma & Ba, 2014) along with batch training, the network 165 

weights are therefore updated at the end of each batch, over 𝑛 training instances. 166 
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Hyperparameter optimisation (Bergstra & Bengio, 2012) is the derivation of the optimal 167 

network parameters and is a major challenge when designing neural network architectures. 168 

Parameters such as, number of layers, regularisation of layers, convolutional kernel shape, 169 

and the learning rate can all be optimised. Methods to solve this problem consist of, grid 170 

search, random search, and manual estimation. As our study aims to demonstrate that a 171 

robust CNN can be trained on small datasets, the focus is on efficient implementation over 172 

more time-consuming systematic search methods. Once a robust network architecture is 173 

derived, a constrained search is performed for the best combination of hyper-parameters. 174 

Our final network architecture consists of 3 convolutional layers, followed by 3 layers of up-175 

sampling (Figure 4). Again, due to the limited nature of the training dataset, the focus for the 176 

network architecture is to limit the potential for overfitting. To localise the features 177 

corresponding to different classes, convolutional layers apply strided 1D convolutional filters 178 

along each component (Figure 3). The stride for the convolutional window is set to 4, this 179 

down-samples the time series by a factor of 4 for each layer, reducing the overall number of 180 

free parameters and allowing for quicker incorporation of long-term temporal dependencies 181 

into the convolution kernel. A dropout parameter is added to the second convolutional layer. 182 

Dropout is a regularisation technique which randomly drops weights during training, reducing 183 

model complexity (Srivastava et al., 2014). One-dimensional max-pooling is applied to the 184 

final convolutional layer, further reducing the overall number of networks weights.  185 

Picking phases 186 

To obtain P- and S-phase onsets from the CNN output probabilities, we use knowledge of 187 

the simple temporal relationships between P- and S-phases to determine onset times (Figure 188 

5). 189 

For the P-phase probability distribution 𝑝 = {𝑝1, 𝑝2, 𝑝3, … , 𝑝𝑛}, and the S-phase probability 190 

distribution 𝑠 = {𝑠1, 𝑠2, 𝑠3, … , 𝑠𝑛}, if P-phase probabilities exceed a defined cut-off threshold 191 
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𝑝𝑐𝑢𝑡 the P-phase onset is searched for within the window [𝑝𝑠𝑡𝑎𝑟𝑡. . 𝑝𝑒𝑛𝑑]. The P-phase onset 192 

is set at the index of the maximum P-phase probability within this range. If the P-phase 193 

criterium is met, the corresponding S-phase is searched for within the searched window 194 

[𝑠𝑠𝑡𝑎𝑟𝑡. . 𝑠𝑒𝑛𝑑], if ∑ 𝑠𝑖
𝑠𝑒𝑛𝑑
𝑖=𝑠𝑠𝑡𝑎𝑟𝑡

>  𝑠𝑐𝑢𝑡 then the S-phase is set at the index of the maximum S-195 

phase probability within search window. Both conditions must be satisfied for an event to be 196 

picked, consequently, the ratio of P:S phase picks using these criteria is 1:1. The parameters 197 

used in detecting phase onsets are provided in Table 1 – note that all index values are relative 198 

to the initial 𝑝𝑐𝑢𝑡 index:  199 
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Results 200 

Predictions 201 

The trained network takes a 6 second input window for 3-component data and makes phase 202 

predictions for each time-sample within the window. Figure 6 displays a sample of the output 203 

phase probabilities for events in the test dataset. The predictions display a clear distinction 204 

between P-phases and S-phases, further confirming that deep-learning based classification 205 

methods engineer the appropriate features to accurately categorise P, S, and noise classes. 206 

This presents a major advantage over historic auto-picking methods which utilise manual 207 

feature extraction and often struggled to identify the S-phase.  To obtain P/S phase onsets, 208 

we apply our autopicker function, with input parameters of Table 1, taking advantage of the 209 

simple temporal relationship between P and S phases to assign phase onsets (vertical lines 210 

on Figure 6). The phase onsets are then compared against the original manual picks and the 211 

residuals are plotted (Figure 7).  212 

The residual distribution for the test dataset displays a good agreement in the centre of both 213 

the P- and S- residual distribution; however, the CNN has also picked extra events/phases in 214 

some waveforms. These extra phase picks may be accurate; however, any additional events 215 

are not represented in our classification vectors as a detailed association of individual phases 216 

to specific events arriving simultaneously is beyond the scope of this work. This negatively 217 

affects the residual distribution and is responsible for several of the large outliers observed.  218 

Relocation testing  219 

To overcome the issue of extra picked arrival times from simultaneously occurring events 220 

biasing our residual comparison, we perform an additional test to remove arrival times from 221 

any events overlapping in time. This additional test provides a more consistent assessment 222 

of auto-picker performance. We perform an iterative inversion procedure, relocating both the 223 

original manual picks and the CNN picks for the initial dataset. The catalogues are relocated 224 
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using the VELEST routine (Kissling et al., 1994), which applies a minimum-1D velocity model 225 

along with station corrections to solve for hypocentre locations. Hypocentral parameters are 226 

solved for all events within the catalogue. When using VELEST, all phase picks within a 227 

segmented trace are assigned to a single event during relocation. The large outlier residuals 228 

a significant distance (+3s) from the trend are attributed to multiple picked events in the same 229 

segmented trace being erroneously classified as a single-event in VELEST. We therefore 230 

reject events with RMS residual larger than 3s to remove any picked events overlapping in 231 

time. Statistics of the residual distribution for the original manual picks compared against the 232 

CNN picks is provided in Table 2. 233 

The residual distribution indicates that manually picked P-phases are slightly more accurate 234 

than CNN P-phase picks (σ decreased by 0.051s); however, S-phase picks of the CNN 235 

approach achieve similar performance to manual picking (σ decreased by 0.019s). We 236 

recognize that our training and test data set used for the earthquake location data set are not 237 

independent; however, the residual distribution obtained from the CNN methodology is similar 238 

to that of the manual picks of an expert seismologist.  239 

Autopicker comparison 240 

To further test the CNN picker, we apply the CNN methodology in predicting phase-onsets 241 

for a separate catalogue of events throughout Northern Chile, on the same temporary seismic 242 

network. Events were initially segmented using an iterative approach based on a STA/LTA 243 

trigger (Rietbrock et al., 2012) and provides a useful test case for the CNN method. The 244 

relocation procedure is again applied to compare performance. The initial number of phase-245 

picks for both methods are provided in Table 3. 246 

Figure 8 displays an event from the new catalogue picked using the CNN method, multiple 247 

event arrivals are again present in the traces. To limit the effect of this issue on our residual 248 



13 
 

comparison, we set both the STA/LTA and CNN method to only pick a single P-/S-phase pair 249 

per trace and again use the iterative relocation procedure to assess residual. 250 

The relocated hypocentre distribution for both methods are displayed in Figure 9. It can be 251 

clearly observed that locations are more clustered in the CNN approach and are better 252 

concentrated along the plate interface, indicating the greater consistency in phase picks for 253 

the CNN approach. Phase residuals for the relocated events are displayed in Figure 10; we 254 

show residuals for both the final catalogues (minimum azimuthal gap < 220°) and for only the 255 

best-located events (minimum azimuthal gap < 160°). Statistics for the residual distributions 256 

are displayed in Table 4. Assuming a normal distribution, the CNN method exhibits decreased 257 

variance in phase residual for both P- and S- phases when compared to the optimised 258 

STA/LTA approach.  259 

The relocation residuals (Figure 10) are not just dependent upon accuracy of detected 260 

phases, but also on velocity variations not captured in the 1D model or station corrections 261 

affecting the residuals. As both catalogues were relocated with the same iterative re-location 262 

procedure using the same 1D velocity model and station delay terms, discrepancies in 263 

residual distributions should directly reflect the relative consistency of picks in each 264 

catalogue. Investigating the residual distribution, the CNN approach has markedly improved 265 

both the overall relocation residual (Figure 9), and the variation in residual for both P- and S-266 

phases. In addition to this, the difference in σ for the well-located events is shown to be more 267 

accurate for the CNN approach, with σ improving by 0.230s for P-phases and 0.326s for S-268 

phases when compared against the optimised STA/LTA picking approach. The statistics of 269 

the residual distribution are also in a similar range to that of the manual picks (see Table 2).   270 
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Discussion & Future work 271 

Accurate and consistent catalogues of phase arrivals are of paramount importance to 272 

seismologists, as they typically form the starting point for further seismological investigations. 273 

The rapidly increasing amount of seismic data available, along with constant developments 274 

in computational capabilities have resulted in the seismological community now increasingly 275 

turning to machine-learning based methods to improve the efficiency of seismic processing. 276 

As shown, automatic feature engineering approaches such as CNNs hold promise for seismic 277 

phase classification, as they only require the 3-component data as an input, and the features 278 

engineered from the data combine to detect the general characteristics of P- phases, S-279 

phases and noise. Our experimental results show that even when data are scarce, a simple 280 

CNN architecture significantly improves the σ of P- and S-pick residuals, especially for well 281 

locatable events (minimum azimuthal gap < 160°), resulting in a decrease of 0.230s and 282 

0.326s, respectively, when compared against an optimised STA/LTA picking approach 283 

(Rietbrock et al., 2012). The decreased variation in residual, indicates that a CNN based 284 

method is more consistent when auto picking, resulting in more accurate hypocentre 285 

relocations. We are close to reaching a point where supervised-learning based methods 286 

exhibit comparable or even increased performances when compared to manual picking by 287 

an expert seismologist (Zhu & Beroza, 2018; Ross et al., 2018). Until now, supervised 288 

learning-based methods have been trained using extensive training datasets (~millions of 289 

examples). The results from our work add to the literature of supervised learning-based 290 

methods for seismic phase classification and demonstrate that with appropriate 291 

considerations regarding overfitting and generalisation, such methods can improve 292 

seismological processing workflows, not just for large catalogues, but for varying datasets. 293 

Future applications of deep-learning based methods in seismology include deploying such 294 



15 
 

pre-trained systems on poorly monitored areas/areas of interest resulting in improved data 295 

recovery, and efficient automation of seismic workflows.   296 
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Data and Resources 297 

All data used in this study can be downloaded from the Incorporated Research Institutes for 298 

Seismology (IRIS) data management centre for the temporary network data and also from 299 

the GEOFON data repository https://geofon.gfz-potsdam.de/waveform/archive/. 300 
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Appendix 395 

A.1 Hyper-parameters and data generalisation parameters. 396 

Lognormal distribution used to scale individual event amplitudes is given by 397 

 398 

 𝑓(𝑥) =
1

√2𝜋𝜎𝑥
𝑒

(−
(ln(𝑥)−𝜇)2

2𝜎2 )
, 𝑥 > 0.                    (A.1)        

We set μ = 0, and σ = 0.25, and sample the output probability distribution of eq. A.1, each 399 

sample is then used as a scale factor for event amplitudes.  400 
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Figure captions 415 

Figure 1 | Distribution of manually picked events throughout Northern Chile, stations are indicated by 416 

white triangles, event hypocentres are plotted as a function of depth. 417 

 418 

Figure 2 | An example of input data (top) and classification data (bottom), inputs to the CNN are 3-419 

component traces, linear-detrended, bandpass filtered between 2-25Hz. The associated classification 420 

vector for P-pick and S-pick are represented probabilistically as a Gaussian with σ = 1s. 421 

 422 

Figure 3 | Schematic displaying how strided 1D convolutions quickly incorporate the long-term 423 

temporal dependencies of the input data into the convolution kernel. 424 

 425 

Figure 4 | Overall CNN architecture, displaying the sequential convolution and re-sampling operations 426 

applied to the input window.  427 

Figure 5 | Displaying how the temporal relationship between P- and S-phases is used to identify 428 

phase onsets from the output CNN probabilities. Solid lines correspond to the output P-/S-phase 429 

probabilities; vertical dashed lines indicate phase onsets and the phase-type is labelled above each 430 

vertical dashed line. Vertical dotted lines indicate the start or end of a P-/S-phase search window, 431 

where the corresponding labels are again presented at the top of each line. The horizontal dotted line 432 

represents the 𝑝𝑐𝑢𝑡  parameter used in determining phase onsets. 433 

 434 

Figure 6 | Output CNN prediction probabilities when applied to identify phase onsets for the test 435 

dataset, phase onsets are indicated by vertical lines. 436 

 437 



25 
 

Figure 7 | Residual of CNN predicted phase onsets vs. original manual picks for the test dataset. 438 

 439 

Figure 8 | Demonstrating the CNN auto picker performance on a new dataset for Northern Chile, 440 

where events were segmented using an STA/LTA trigger (Rietbrock et al., 2012). We only allow the 441 

auto picker to pick the presence of a single P-/S-phase per trace, to prevent relocation errors. 442 

 443 

Figure 9 | Hypocentre relocation comparison for the STA/LTA auto picked catalogue (top) against the 444 

CNN auto picked catalogue (bottom) event relocations are plotted as a function of RMS residual, slab 445 

profile is provided by Hayes et al., (2012). 446 

 447 

Figure 10 | Both auto picking methods phase residuals following hypocentral relocations, plotted for 448 

well-located events (minimum azimuthal gap < 160°) and the for entire relocated catalogues 449 

(minimum azimuthal gap < 220°).  450 
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Figures 451 

Figure 1 452 
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Figure 2 454 

 455 

  456 



28 
 

Figure 3 457 
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Tables 485 

Table 1 486 

Table 1 | Parameters applied to the autopicker function, which takes advantage of the temporal 487 

relationship between phases to identify phase onsets, all start/end indexes are given in samples 488 

(where sampling rate for all instruments = 100Hz). 489 

𝑝𝑐𝑢𝑡 0.75 𝑠𝑠𝑢𝑚 5 

𝑝𝑠𝑡𝑎𝑟𝑡 -200 𝑠𝑠𝑡𝑎𝑟𝑡 500 

𝑝𝑒𝑛𝑑 200 𝑠𝑒𝑛𝑑 4000 

Table 2 490 

Table 2 | Statistics of residual distribution for original manually picked catalogue, both for the original 491 

manual picks and the CNN methodology picks.  492 

GAP < 220° CNN Manual 

P 
μ -0.261 -0.124 

σ 0.445 0.394 

S 
μ 0.282 0.390 

σ 0.749 0.730 

Table 3 493 

Table 3 | Overall auto picks on a separate catalogue of new events throughout Northern Chile.  494 

  STA/LTA CNN 

P 72,655  77,623  

S 63,353  77,623  

Total 136,008  155,246  

  495 
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Table 4 496 

Table 4 | Statistics of residual distribution for GAP < 220° and GAP < 160°. 497 

    GAP < 220° GAP < 160° 

    CNN STA/LTA CNN STA/LTA 

P 
μ -0.238 -0.216 -0.247 -0.333 

σ 0.487 0.696 0.393 0.623 

S 
μ 0.277 0.539 0.270 0.435 

σ 0.780 1.081 0.596 0.922 

 498 

 499 

 500 


