99 research outputs found

    A comparison of Power Doppler with conventional sonographic imaging for the evaluation of renal artery stenosis

    Get PDF
    BACKGROUND: Power Doppler (PD) has improved diagnostic capabilities of vascular sonography, mainly because it is independent from the angle of insonation. We evaluated this technique in a prospective comparison with conventional imaging, consisting in Duplex and Color Doppler, for the evaluation of Renal Artery (RA) stenosis. METHODS: Sensitivity, specificity and predictive values of PD and conventional imaging were assessed in a blinded fashion on eighteen patients, 9 with angiographic evidence of unilateral RA stenosis (hypertensive patients) and 9 with angiographically normal arteries (control group). PD images were interpreted with an angiography-like criteria. RESULTS: In the control group both techniques allowed correct visualization of 16 out of the 18 normal arteries (93% specificity). Only in five hypertensive patients RA stenosis was correctly identified with conventional technique (56% sensitivity and 86% negative predictive value); PD was successful in all hypertensive patients (100% sensitivity and negative predictive value), since the operators could obtain in each case of RA stenosis a sharp color signal of the whole vessel with a clear "minus" at the point of narrowing of the lumen. All results were statistically significant (p < 0.01). CONCLUSIONS: This study demonstrates that PD is superior to conventional imaging, in terms of sensitivity and specificity, for the diagnosis of RA stenosis, because it allows a clear visualization of the whole stenotic vascular lumen. Especially if it is used in concert with the other sonographic techniques, PD can enable a more accurate imaging of renovascular disease with results that seem comparable to selective angiography

    Diversity of a cytokinin dehydrogenase gene in wild and cultivated barley

    Get PDF
    The cytokinin dehydrogenase gene HvCKX2.1 is the regulatory target for the most abundant heterochromatic small RNAs in drought-stressed barley caryopses. We investigated the diversity of HvCKX2.1 in 228 barley landraces and 216 wild accessions and identified 14 haplotypes, five of these with ten or more members, coding for four different protein variants. The third largest haplotype was abundant in wild accessions (51 members), but absent from the landrace collection. Protein structure predictions indicated that the amino acid substitution specific to haplotype 3 could result in a change in the functional properties of the HvCKX2.1 protein. Haplotypes 1–3 have overlapping geographical distributions in the wild population, but the average rainfall amounts at the collection sites for haplotype 3 plants are significantly higher during November to February compared to the equivalent data for plants of haplotypes 1 and 2. We argue that the likelihood that haplotype 3 plants were excluded from landraces by sampling bias that occurred when the first wild barley plants were taken into cultivation is low, and that it is reasonable to suggest that plants with haplotype 3 are absent from the crop because these plants were less suited to the artificial conditions associated with cultivation. Although the cytokinin signalling pathway influences many aspects of plant development, the identified role of HvCKX2.1 in the drought response raises the possibility that the particular aspect of cultivation that mitigated against haplotype 3 relates in some way to water utilization. Our results therefore highlight the possibility that water utilization properties should be looked on as a possible component of the suite of physiological adaptations accompanying the domestication and subsequent evolution of cultivated barley

    Bone Marrow Stromal Cell Transplantation Mitigates Radiation-Induced Gastrointestinal Syndrome in Mice

    Get PDF
    Nuclear accidents and terrorism presents a serious threat for mass casualty. While bone-marrow transplantation might mitigate hematopoietic syndrome, currently there are no approved medical countermeasures to alleviate radiation-induced gastrointestinal syndrome (RIGS), resulting from direct cytocidal effects on intestinal stem cells (ISC) and crypt stromal cells. We examined whether bone marrow-derived adherent stromal cell transplantation (BMSCT) could restitute irradiated intestinal stem cells niche and mitigate radiation-induced gastrointestinal syndrome.Autologous bone marrow was cultured in mesenchymal basal medium and adherent cells were harvested for transplantation to C57Bl6 mice, 24 and 72 hours after lethal whole body irradiation (10.4 Gy) or abdominal irradiation (16-20 Gy) in a single fraction. Mesenchymal, endothelial and myeloid population were characterized by flow cytometry. Intestinal crypt regeneration and absorptive function was assessed by histopathology and xylose absorption assay, respectively. In contrast to 100% mortality in irradiated controls, BMSCT mitigated RIGS and rescued mice from radiation lethality after 18 Gy of abdominal irradiation or 10.4 Gy whole body irradiation with 100% survival (p<0.0007 and p<0.0009 respectively) beyond 25 days. Transplantation of enriched myeloid and non-myeloid fractions failed to improve survival. BMASCT induced ISC regeneration, restitution of the ISC niche and xylose absorption. Serum levels of intestinal radioprotective factors, such as, R-Spondin1, KGF, PDGF and FGF2, and anti-inflammatory cytokines were elevated, while inflammatory cytokines were down regulated.Mitigation of lethal intestinal injury, following high doses of irradiation, can be achieved by intravenous transplantation of marrow-derived stromal cells, including mesenchymal, endothelial and macrophage cell population. BMASCT increases blood levels of intestinal growth factors and induces regeneration of the irradiated host ISC niche, thus providing a platform to discover potential radiation mitigators and protectors for acute radiation syndromes and chemo-radiation therapy of abdominal malignancies

    Developments in the Photonic Theory of Fluorescence

    Get PDF
    Conventional fluorescence commonly arises when excited molecules relax to their ground electronic state, and most of the surplus energy dissipates in the form of photon emission. The consolidation and full development of theory based on this concept has paved the way for the discovery of several mechanistic variants that can come into play with the involvement of laser input – most notably the phenomenon of multiphoton-induced fluorescence. However, other effects can become apparent when off-resonant laser input is applied during the lifetime of the initial excited state. Examples include a recently identified scheme for laser-controlled fluorescence. Other systems of interest are those in which fluorescence is emitted from a set of two or more coupled nanoemitters. This chapter develops a quantum theoretical outlook to identify and describe these processes, leading to a discussion of potential applications ranging from all-optical switching to the generation of optical vortices

    Ultrafast Coherent Spectroscopy

    Full text link

    The dynamic geophysical environment of (101955) Bennu based on OSIRIS-REx measurements

    Get PDF
    The top-shaped morphology characteristic of asteroid (101955) Bennu, often found among fast-spinning asteroids and binary asteroid primaries, may have contributed substantially to binary asteroid formation. Yet a detailed geophysical analysis of this morphology for a fast-spinning asteroid has not been possible prior to the Origins, Spectral Interpretation, Resource Identification, and Security-Regolith Explorer (OSIRIS-REx) mission. Combining the measured Bennu mass and shape obtained during the Preliminary Survey phase of the OSIRIS-REx mission, we find a notable transition in Bennu’s surface slopes within its rotational Roche lobe, defined as the region where material is energetically trapped to the surface. As the intersection of the rotational Roche lobe with Bennu’s surface has been most recently migrating towards its equator (given Bennu’s increasing spin rate), we infer that Bennu’s surface slopes have been changing across its surface within the last million years. We also find evidence for substantial density heterogeneity within this body, suggesting that its interior is a mixture of voids and boulders. The presence of such heterogeneity and Bennu’s top shape are consistent with spin-induced failure at some point in its past, although the manner of its failure cannot yet be determined. Future measurements by the OSIRIS-REx spacecraft will provide insight into and may resolve questions regarding the formation and evolution of Bennu’s top-shape morphology and its link to the formation of binary asteroids

    Evidence for widespread hydrated minerals on asteroid (101955) Bennu

    Get PDF
    Early spectral data from the Origins, Spectral Interpretation, Resource Identification, and Security-Regolith Explorer (OSIRIS-REx) mission reveal evidence for abundant hydrated minerals on the surface of near-Earth asteroid (101955) Bennu in the form of a near-infrared absorption near 2.7 ”m and thermal infrared spectral features that are most similar to those of aqueously altered CM-type carbonaceous chondrites. We observe these spectral features across the surface of Bennu, and there is no evidence of substantial rotational variability at the spatial scales of tens to hundreds of metres observed to date. In the visible and near-infrared (0.4 to 2.4 ”m) Bennu’s spectrum appears featureless and with a blue (negative) slope, confirming previous ground-based observations. Bennu may represent a class of objects that could have brought volatiles and organic chemistry to Earth

    Elevated apoptosis impairs epithelial cell turnover and shortens villi in TNF-driven intestinal inflammation

    Get PDF
    The intestinal epithelial monolayer, at the boundary between microbes and the host immune system, plays an important role in the development of inflammatory bowel disease (IBD), particularly as a target and producer of pro-inflammatory TNF. Chronic overexpression of TNF leads to IBD-like pathology over time, but the mechanisms driving early pathogenesis events are not clear. We studied the epithelial response to inflammation by combining mathematical models with in vivo experimental models resembling acute and chronic TNF-mediated injury. We found significant villus atrophy with increased epithelial cell death along the crypt-villus axis, most dramatically at the villus tips, in both acute and chronic inflammation. In the acute model, we observed overexpression of TNF receptor I in the villus tip rapidly after TNF injection and concurrent with elevated levels of intracellular TNF and rapid shedding at the tip. In the chronic model, sustained villus atrophy was accompanied by a reduction in absolute epithelial cell turnover. Mathematical modelling demonstrated that increased cell apoptosis on the villus body explains the reduction in epithelial cell turnover along the crypt-villus axis observed in chronic inflammation. Cell destruction in the villus was not accompanied by changes in proliferative cell number or division rate within the crypt. Epithelial morphology and immunological changes in the chronic setting suggest a repair response to cell damage although the villus length is not recovered. A better understanding of how this state is further destabilised and results in clinical pathology resembling IBD will help identify suitable pathways for therapeutic intervention
    • 

    corecore