1,444 research outputs found

    Endstates in multichannel spinless p-wave superconducting wires

    Get PDF
    Multimode spinless p-wave superconducting wires with a width W much smaller than the superconducting coherence length \xi are known to have multiple low-energy subgap states localized near the wire's ends. Here we compare the typical energies of such endstates for various terminations of the wire: A superconducting wire coupled to a normal-metal stub, a weakly disordered superconductor wire and a wire with smooth confinement. Depending on the termination, we find that the energies of the subgap states can be higher or lower than for the case of a rectangular wire with hard-wall boundaries.Comment: 10 pages, 7 figure

    Scattering of rare-gas atoms at a metal surface: evidence of anticorrugation of the helium-atom potential-energy surface and the surface electron density

    Full text link
    Recent measurements of the scattering of He and Ne atoms at Rh(110) suggest that these two rare-gas atoms measure a qualitatively different surface corrugation: While Ne atom scattering seemingly reflects the electron-density undulation of the substrate surface, the scattering potential of He atoms appears to be anticorrugated. An understanding of this perplexing result is lacking. In this paper we present density functional theory calculations of the interaction potentials of He and Ne with Rh(110). We find that, and explain why, the nature of the interaction of the two probe particles is qualitatively different, which implies that the topographies of their scattering potentials are indeed anticorrugated.Comment: RevTeX, 4 pages, 10 figure

    Characterization of seedling and adult-plant resistance to stem rust race Ug99 in Iranian bread wheat landraces

    Get PDF
    The full-length infectious cDNA clone was constructed and sequenced from the strain DM of echovirus 9, which was recently isolated from a 6-week-old child at the clinical onset of type 1 diabetes. Parallel with the isolate DM, the full-length infectious cDNA clone of the prototype strain echovirus 9 Barty (Barty-INF), was constructed and sequenced. Genetic relationships of the sequenced echo 9 viruses to the other members of the human enterovirus type B species were studied by phylogenetic analyses. Comparison of capsid protein sequences showed that the isolate DM was closely related to both prototype strains: Hill and Barty-INF. The only exception was the inner capsid protein VP4 where serotype specificity was not evident and the isolate DM clustered with the strain Hill and the strain Barty-INF with echovirus 30 Bastianni. Likewise, the nonstructural protein coding region, P2P3, of isolate DM was more similar to strain Hill than to strain Barty-INF. However, like echovirus 9 Barty, the isolate DM contained the RGD-motif in the carboxy terminus of capsid protein VP1. By blocking experiments using an RGD-containing peptide and a polyclonal rabbit antiserum to the alpha(v)beta(3)-integrin, it was shown that this molecule works as a cellular receptor for isolate DM. By using primary human islets, it was shown that the isolate DM is capable of infecting insulin-producing beta-cells like the corresponding prototype strains did. However, only isolate DM was clearly cytolytic for beta-cells. The infectious clones that were made allow further investigations of the molecular features responsible for the diabetogenicity of the isolate DM

    Uncertainty Evaluation of Computational Model Used to Support the Integrated Powerhead Demonstration Project

    Get PDF
    NASA and the U.S. Air Force are working on a joint project to develop a new hydrogen-fueled, full-flow, staged combustion rocket engine. The initial testing and modeling work for the Integrated Powerhead Demonstrator (IPD) project is being performed by NASA Marshall and Stennis Space Centers. A key factor in the testing of this engine is the ability to predict and measure the transient fluid flow during engine start and shutdown phases of operation. A model built by NASA Marshall in the ROCket Engine Transient Simulation (ROCETS) program is used to predict transient engine fluid flows. The model is initially calibrated to data from previous tests on the Stennis E1 test stand. The model is then used to predict the next run. Data from this run can then be used to recalibrate the model providing a tool to guide the test program in incremental steps to reduce the risk to the prototype engine. In this paper, they define this type of model as a calibrated model. This paper proposes a method to estimate the uncertainty of a model calibrated to a set of experimental test data. The method is similar to that used in the calibration of experiment instrumentation. For the IPD example used in this paper, the model uncertainty is determined for both LOX and LH flow rates using previous data. The successful use of this model is then demonstrated to predict another similar test run within the uncertainty bounds. The paper summarizes the uncertainty methodology when a model is continually recalibrated with new test data. The methodology is general and can be applied to other calibrated models

    Correlations and scaling in one-dimensional heat conduction

    Full text link
    We examine numerically the full spatio-temporal correlation functions for all hydrodynamic quantities for the random collision model introduced recently. The autocorrelation function of the heat current, through the Kubo formula, gives a thermal conductivity exponent of 1/3 in agreement with the analytical prediction and previous numerical work. Remarkably, this result depends crucially on the choice of boundary conditions: for periodic boundary conditions (as opposed to open boundary conditions with heat baths) the exponent is approximately 1/2. This is expected to be a generic feature of systems with singular transport coefficients. All primitive hydrodynamic quantities scale with the dynamic critical exponent predicted analytically.Comment: 7 pages, 11 figure

    Heat conduction in one dimensional nonintegrable systems

    Full text link
    Two classes of 1D nonintegrable systems represented by the Fermi-Pasta-Ulam (FPU) model and the discrete ϕ4\phi^4 model are studied to seek a generic mechanism of energy transport in microscopic level sustaining macroscopic behaviors. The results enable us to understand why the class represented by the ϕ4\phi^4 model has a normal thermal conductivity and the class represented by the FPU model does not even though the temperature gradient can be established.Comment: 4 Revtex Pages, 4 Eps figures included, to appear in Phys. Rev. E, March 200

    Controlling the energy flow in nonlinear lattices: a model for a thermal rectifier

    Full text link
    We address the problem of heat conduction in 1-D nonlinear chains; we show that, acting on the parameter which controls the strength of the on site potential inside a segment of the chain, we induce a transition from conducting to insulating behavior in the whole system. Quite remarkably, the same transition can be observed by increasing the temperatures of the thermal baths at both ends of the chain by the same amount. The control of heat conduction by nonlinearity opens the possibility to propose new devices such as a thermal rectifier.Comment: 4 pages with figures included. Phys. Rev. Lett., to be published (Ref. [10] corrected

    Extreme events in total ozone over Arosa – Part 2: Fingerprints of atmospheric dynamics and chemistry and effects on mean values and long-term changes

    Get PDF
    In this study the frequency of days with extreme low (termed ELOs) and extreme high (termed EHOs) total ozone values and their influence on mean values and trends are analyzed for the world's longest total ozone record (Arosa, Switzerland). The results show (a) an increase in ELOs and (b) a decrease in EHOs during the last decades and (c) that the overall trend during the 1970s and 1980s in total ozone is strongly dominated by changes in these extreme events. After removing the extremes, the time series shows a strongly reduced trend (reduction by a factor of 2.5 for trend in annual mean). Excursions in the frequency of extreme events reveal "fingerprints" of dynamical factors such as ENSO or NAO, and chemical factors, such as cold Arctic vortex ozone losses, as well as major volcanic eruptions of the 20th century (Gunung Agung, El Chichón, Mt. Pinatubo). Furthermore, atmospheric loading of ozone depleting substances leads to a continuous modification of column ozone in the Northern Hemisphere also with respect to extreme values (partly again in connection with polar vortex contributions). Application of extreme value theory allows the identification of many more such "fingerprints" than conventional time series analysis of annual and seasonal mean values. The analysis shows in particular the strong influence of dynamics, revealing that even moderate ENSO and NAO events have a discernible effect on total ozone. Overall the approach to extremal modelling provides new information on time series properties, variability, trends and the influence of dynamics and chemistry, complementing earlier analyses focusing only on monthly (or annual) mean values

    Extreme events in total ozone over Arosa – Part 1: Application of extreme value theory

    Get PDF
    In this study ideas from extreme value theory are for the first time applied in the field of stratospheric ozone research, because statistical analysis showed that previously used concepts assuming a Gaussian distribution (e.g. fixed deviations from mean values) of total ozone data do not adequately address the structure of the extremes. We show that statistical extreme value methods are appropriate to identify ozone extremes and to describe the tails of the Arosa (Switzerland) total ozone time series. In order to accommodate the seasonal cycle in total ozone, a daily moving threshold was determined and used, with tools from extreme value theory, to analyse the frequency of days with extreme low (termed ELOs) and high (termed EHOs) total ozone at Arosa. The analysis shows that the Generalized Pareto Distribution (GPD) provides an appropriate model for the frequency distribution of total ozone above or below a mathematically well-defined threshold, thus providing a statistical description of ELOs and EHOs. The results show an increase in ELOs and a decrease in EHOs during the last decades. The fitted model represents the tails of the total ozone data set with high accuracy over the entire range (including absolute monthly minima and maxima), and enables a precise computation of the frequency distribution of ozone mini-holes (using constant thresholds). Analyzing the tails instead of a small fraction of days below constant thresholds provides deeper insight into the time series properties. Fingerprints of dynamical (e.g. ENSO, NAO) and chemical features (e.g. strong polar vortex ozone loss), and major volcanic eruptions, can be identified in the observed frequency of extreme events throughout the time series. Overall the new approach to analysis of extremes provides more information on time series properties and variability than previous approaches that use only monthly averages and/or mini-holes and mini-highs
    corecore