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Endstates in multichannel spinless p-wave superconducting wires
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Multimode spinless p-wave superconducting wires with a width W much smaller than the superconducting
coherence length & are known to have multiple low-energy subgap states localized near the wire’s ends. Here
we compare the typical energies of such endstates for various terminations of the wire: A superconducting wire
coupled to a normal-metal stub, a weakly disordered superconductor wire and a wire with smooth confinement.
Depending on the termination, we find that the energies of the subgap states can be higher or lower than for the

case of a rectangular wire with hard-wall boundaries.
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I. INTRODUCTION

In the current search for Majorana fermions in nanowire
geometries’> an important theoretical challenge is to un-
derstand the multiplicity of possible fermionic bound states
that can form at the ends of the wire and how a possible
Majorana bound state can be identified among them. This
is particularly relevant for multichannel geometries, in which
fermionic states localized near the ends of the wire are expected
to occur at energies much smaller than the excitation gap for
bulk excitations if the wire width is much smaller than the
superconducting coherence length. In this article we explore
the dependence of these subgap endstates on the details of the
termination of the wire and on impurity scattering.

The interest in isolating Majorana fermions arises be-
cause their nonlocal properties and non-Abelian braiding
statistics render them potentially useful for fault tolerant
quantum computation.>~ Majorana fermions occur—at least
theoretically—at the ends of one-dimensional spinless p-wave
superconductors.'? Recent proposals suggest ways of engi-
neering solid-state systems that effectively behave as spinless
p-wave superconductors by combining an s-wave supercon-
ductor and a topological insulator,'"'> a semiconductor'3-°
or ferromagnet.'’”?! Building on the proposals of Refs. 15
and 16, two experimental groups have reported an enhanced
tunneling density of states at the ends of InAs and InSb wires in
proximity to a superconductor, consistent with the existence of
Majorana bound states at the ends of these wires, 2223 whereas
a number of other groups claim the observation of Majorana
bound states using different methods.?*2°

Whereas the original proposals for Majorana fermions in
wire geometries focused on one-dimensional systems, it is
by now well established that the topological superconducting
phase with Majorana end states may persist in a quasi-one-
dimensional multichannel setting.”’->7 A difference between
the quasi-one-dimensional and one-dimensional settings is,
however, that a possible zero-energy Majorana state localized
at the wire’s end may coexist with other fermionic subgap
states, analogous to those found in vortex cores of bulk
superconductors.®® For the case of an N-channel spinless
p + ip superconductor with a rectangular geometry and with
width W much smaller than the superconducting coherence
length &, three of us recently showed that the number of
such fermionic subgap states is ~N /2, and that their typical
energy is &yp ~ A(W/E)?, A being the superconducting gap
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size.”” The lowest-lying and highest-lying fermionic subgap
states have energies &min ~ &yp/NInN and emax ~ Négyyp,
respectively. The fermionic subgap states also exist in a
nontopological phase without zero-energy Majorana endstate,
thus posing a potential obstacle for the identification of the
topological phase through the observation of an enhanced
density of states near zero energy.

In a recent article, Potter and Lee2® observe that the
dependence of the energy of the lowest-lying fermionic
subgap state on system parameters changes qualitatively if the
rectangular geometry of Ref. 27 is replaced by a geometry with
rounded ends. They point out that the calculation of the energy
of the fermionic subgap state for the rectangular geometry is
plagued by a subtle cancellation, which does not appear for
a generic wire ending. In particular it was found in Ref. 28
that the lowest-lying fermionic subgap state has an energy
significantly above the prediction of Ref. 27 for a wire with
width W ~ & and rounded ends.

Motivated by these observations we present here a detailed
investigation of the effect that the wire termination has on the
energies of the fermionic subgap states for the multichannel
spinless p + ip superconductor. Remarkably, we find that,
depending on the details of the wire ending, the energies of
the fermionic subgap states can be significantly above, as well
as below, the rectangular-wire case of Ref. 27. For W « &,
which is the regime in which all subgap states have energy
well below the bulk gap A, we find an increase of the energies
of the subgap states if an arbitrarily-shaped normal layer is
attached to the wire’s end, the magnitude of the increase being
consistent with the estimate of Ref. 28 for a wire with rounded
ends. On the other hand, the presence of impurities—weak
enough to preserve the topological phase®*’—on average
reduces the energies of the fermionic endstates below the
estimate of Ref. 27, while a smooth confinement (with a slowly
increasing potential energy providing the confinement along
the wire’s axis) leads to even smaller energies of the fermionic
subgap states.

Our results are derived for the two-dimensional spinless
p + ip superconducting strip of width W. The model of a
spinless p + ip superconductor is an effective low-energy de-
scription for the various proposals to realize one-dimensional
or quasi-one-dimensional topological superconductors, pro-
vided the number N of propagating channels at the Fermi level
is chosen equal to the number of spin-polarized channels in
the case of the semiconductor or ferromagnet proposals, which
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may be smaller than the total number of transverse channels
in the wire. (The edges of a topological insulator always have
N =1, so that a multichannel p + ip model is not relevant
in that case.) In the appendix we give a mapping between the
spinless p-wave model and the semiconductor-wire proposals,
valid for magnetic fields with a Zeeman splitting that exceeds
both the spin-orbit and the pairing energy. A large number
of subgap states can be found in wide semiconductor wires,
where different transverse modes are nearby in energy. Further-
more, even for three-dimensional experimental realizations
of smaller width one may occasionally face the case of a
small but finite number of channels N > 1 due to accidental
degeneracies of different transverse modes. In the context of
proposals involving half metals, the spinless p + ip-model
provides a good basis since, by definition, the Zeeman energy
is the largest energy scale in the system.

The remainder of this article is organized as follows: In
Sec. II we briefly review the symmetries of the model (2) and
the reason for the appearance of multiple low-lying states if
the wire width W is much smaller than the superconducting
coherence length &. In Sec. III we describe a scattering theory
of fermionic subgap states with arbitrary wire endings. Section
IV discusses the p + ip model with weak disorder, while the
effect of a smooth potential at the wire’s end is discussed in Sec.
V. We conclude in Sec. VI. In the two appendices we discuss
the mapping between the p + ip model and the semiconductor
models, as well as the case W ~ & of comparable wire width
and coherence length.

IL p+ip MODEL

Our calculations are performed for a two-dimensional
spinless p + ip superconductor, which is described by the
two-component Bogoliubov-de Gennes Hamiltonian, which
we write as

H=Hy+ H,+ Hy, (D
with
2
p /
Hy = (_ - M) T, + A piTy,
2m
H, = —A/pyry, Hy =V(r)r,. )

Here 1z, 7y, and 7, are Pauli matrices in particle-hole space,
A’ specifies the p-wave superconducting order parameter,
u= hzk]% /2m and m are the chemical potential and electron
mass, and V(r) a potential that describes the confinement at
the ends of the wire as well as the scattering off impurities. The
two-dimensional coordinate r = (x,y), where 0 <y < W,
with hard-wall boundary conditions at y =0 and y = W.
The superconducting order parameter derives from proximity
coupling to a bulk superconductor, so that no self-consistency
condition for A’ needs to be employed.

Hypothetical endstates are localized within a distance of the
order of the superconducting coherence length & = h(A’m)~!
from the wire’s ends. For thin wires with W <« & it is a
good starting point to analyze the Hamiltonian H = Hy + Hy
without the term H,. The Hamiltonian Hy has a chiral
symmetry,41 T, Hyt, = —H), and there exist

N =int[(W/m),/k2 — £72] 3)
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FIG. 1. (Color online) Schematic picture of the spectrum of low-
energy excitations of a p + ip wire as a function of its width W.
The gap for bulk excitations closes at those values of W for which
(W/m)/ki — £-2 is an integer. When the bulk gap is finite, there are
low-energy subgap states localized near the ends of the wire. In the
text, we use &min to denote the energy of the lowest-lying fermionic
subgap state, &, for the typical energy of a subgap state, and &, for
the energy of the highest-lying fermionic subgap state.

Majorana bound states at each end of the wire.?’" The
stepwise increase of the number of Majorana endstates for
wire widths W such that (W/m)/kz — &% is an integer is
accompanied by a closing of the bulk excitation gap of H,.
Inclusion of the potential term Hy does not lift the degeneracy
of the Majorana endstates, since Hy preserves the chiral
symmetry, although it may change the boundaries of the
phases with different N if Hy is nonzero in the bulk of the
wire. In contrast, the term H, breaks the chiral symmetry
and couples the N Majorana bound states, giving rise to
(generically) int(N/2) fermionic states at each end and a
single Majorana endstate if N is odd. If W « & the splitting
of the endstates is small in comparison to the bulk energy gap
A = A’hikp, and the resulting fermionic states cluster near zero
energy.”’?

A schematic picture of the endstate spectrum as a function
of W is shown in Fig. 1. The endstates are characterized by the
energy emin of the lowest-lying fermionic end state, the typical
endstate energy &y, and the energy &y, of the highest-lying
endstate. For small N these three energy scales are comparable,
but for large N they may differ considerably. The energy emyin
serves as the “energy gap” protecting the topological state and
sets the required energy resolution if the presence or absence
of a Majorana endstate is detected through a tunneling density
of states measurement.

The specific case of a rectangular wire geometry, with hard-
wall boundary conditions at each end of the wire and without
disorder, was investigated in Ref. 27. We now investigate two
other possible terminations, as well as the effect of disorder
on the energies of subgap endstates in multichannel spinless
p-wave superconducting wires.

III. NORMAL-METAL STUB

In this section, we consider a quasi-one-dimensional spin-
less p + ip superconductor without disorder and coupled to
a normal-metal stub at its end. We choose coordinates such
that the spinless superconductor occupies the space x > O,
0 < y < W, see Fig. 2. Such a wire ending is relevant, e.g., for
the experimental geometry of Ref. 22, in which a topological
phase is induced in a semiconductor nanowire by laterally
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FIG. 2. (Color online) Schematic drawing of a spinless p-wave
superconducting wire (§) coupled to a normal-metal (N) stub at one
end. The top panel shows a rectangular stub, the bottom panel shows
a chaotic cavity attached to the superconducting wire.

coupling it to a superconductor, while a part of the wire sticks
out from under the superconductor and is pinched off by a gate
at a finite distance.

We take the Hamiltonian of the normal stub to be real and
symmetric, in order to preserve the chiral symmetry of the
Hamiltonian H,. Following Ref. 27 we first solve for the wave
functions ) of the N Majorana modes for the Hamiltonian
Hy and then treat H, in perturbation theory. The potential term
Hy is set to zero throughout this calculation.

The Majorana states have support in the normal stub as well
as in a segment of the superconducting wire of length ~£. In
the superconducting region x > 0 the wave functions i of the
Majorana states can be written as

Y(r) =Y an G (F) + s pni (1), “)

where the basis states ¢,,n = 1,2,...,N, read

eim/4 2Zm o pvage . (NTY
Gnx(r) = (e—in/4) ‘/Wkne *2/8 sin W ) )
with
ky = /K2 — (n7r) W (6)

The basis states ¢,+ have been normalized to unit flux. The
above expressions for the basis states and their normalization
are valid up to corrections of order (W/£)?, which we neglect
throughout this calculation.

The coupling to the normal-metal stub imposes boundary
conditions on the coefficients a,+, which we express in terms
of the scattering matrix S,,,» of the normal stub,

*
apt = E Sun'lp—,  Qp_ = E Snn’an’+- @)
n' n'

Because the Hamiltonian of the normal stub is real and
symmetric, the scattering matrix S, is unitary and symmetric,
Sy = Spn, Which ensures that the 2N equations (7) have
N independent solutions, corresponding to the N Majorana
endstates.

For finding an explicit representation of the N Majorana
states ), j =1,2,...,N we use the fact that the scatter-
ing matrix S and the Wigner-Smith time-delay matrix*>*
Q = ihS'3S/du of the normal stub can be simultaneously
decomposed as

S=UTU, Q=U'diag(t,...,ty)U, (8)
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where U is an N x N unitary matrix and the 7; > 0, i =
1,2,...,N, are the so-called “proper time delays.” With this
decomposition, a solution to the boundary conditions (7) is
given by

(]) _ U*

a:ljl:Uﬂjv nj ]=17217N (9)

The N states that are defined through these coefficients,

Jr) = Za‘”qsn (") +aleu(r).  (10)

are Majorana modes (they satisfy ¥)* = ,¢/()), but they
are not necessarily orthonormal. In order to construct an
orthonormal set, we first calculate the scalar product M;; of
the modes ¥,

[ee) w
M = / dx / dy T ORI (r)
0 0

+ / dri* Py (r)
stub

U,;U,;
1 —ik,&

= Re (Unj -+ ) +2t;8;, (11)
n

Here we used the relation between the Wigner-Smith time
delay matrix and the normalization of scattering states in
order to perform the integration over the sub, see Ref. 43. The
overlap matrix M is real, positive definite, and symmetric.
It is manifestly diagonal if the scattering matrix S and the
time-delay matrix Q are diagonal or in the “large-stub limit,”
which is defined as the limit in which the mean inverse
dwell time 7/T is much smaller than the superconducting
gap. In both cases, one obtains an orthonormal basis for
the N Majorana modes by setting /) = )/, /M ;. In the
general case, M is not diagonal, however, one has to construct
an orthonormal system with the help of the orthogonal
transformation O that diagonalizes M, i.e., OTMO = )2,
where A = diag(A;,Az, ..., Ay) is a diagonal matrix with
positive elements. The corresponding orthonormal basis set
one thus obtains reads

v = Zw”(r)au . (12)

n=1

Inclusion of H,, which breaks the chiral symmetry, gives
rise to a splitting of the N degenerate Majorana endstates
constructed above. With respect to the unnormalized states
¥, this splitting is described by the N x N matrix

Hy) = (G119 )

_ 4iA'm nn'[1 — (—1y"*"]
W — )k
2 U,;U;
n’l R n'l , 13
XZ|: k :tk +§ e(kn’ikn)z ( )

where we neglected corrections smaller by a factor of order
(W/&)2. The matrix I:Ij(,l) is antisymmetric and purely imag-
inary, which ensures the existence of a single zero-energy
bound state if N is odd. In order to find a true effective
Hamiltonian HD, the eigenvalues of which represent the
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energies of the fermionic endstates, one should transform to
the basis of orthogonal states /) introduced in Eq. (12),

|
HY =_-0"AVo-. (14)
A A

In the special case N = 2, this transformation can be carried
out for an arbitrary scattering matrix S, and the energy of the
resulting single fermionic bound state is
7 (1)
H
&= ’—12 (15)

MMy — M2,

We now discuss two particular realizations of a metal stub in
detail.

A. Rectangular stub

First, we consider a rectangular stub of length L attached to
the spinless p-wave superconducting wire, see Fig. 2(a). For
this geometry, both the scattering matrix S and the Wigner-
Smith time-delay matrix Q are diagonal,

2mL

nn' = _8}1}1’7 16
Q0 ™ (16)

with &, given by Eq. (6). Since there is no mixing between
different channels, the zero energy modes /) already form an
orthogonal basis. The effective Hamiltonian in the normalized

basis ) = ¢/, /M;; has H](.ll) = 0if j +/is even and

4i A jl 3 { sin[L(k; + k;)]
ki £ k;

2ik, L
Sy = —e™™ 5}111”

1 _

TUWE L@ - ) 4
2_Wcos[L(k‘,~ + k)]
¢ (ki x kj)2

a7

if j + 1/ is odd, up to corrections smaller by a factor of order
(W/E).

The second term in the effective Hamiltonian (17) is smaller
than the first one by a factor of order W /&. However, only this
second term contributes in the limit L = 0 in which there is
no normal metal stub.?’ This is a variation of the cancellation
effect pointed out by Potter and Lee.”® We now analyze the
eigenvalues of the effective Hamiltonian H" for finite L,
when the first term between brackets dominates.

Since no closed-form expressions for the eigenvalues of
H® could be obtained, we numerically diagonalized H
and investigated the dependence of the minimum, typical, and
maximal positive eigenvalues on the ratio L/ W as well as the
channel number N. For L ~ W, this analysis gives

wa
3

see Fig. 3. The maximum and minimum energies of the subgap
states scale as egin ~ Eiyp/N, Emax ~ Etyp- A similar analysis
for kg '« LW gives estimates for emin, &yp, and Emax
which are smaller by a factor L/ W, whereas for L < kg ! they
are smaller by a factor L3k2/W. A crossover to the results of
Ref. 27 takes place for L < (W?/k2£)'/3. In the limit of large
N the energies of the fermionic subgap states are best described
through their level density, which is shown in Fig. 4.

Eyyp ~ Em = , (18)
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FIG. 3. (Color online) Typical and maximal energies of fermionic
subgap states in a spinless p-wave superconductor with a rectangular
normal-metal stub of length L as a function of L/ W for different
channels numbers (N = 15,27, 55, 99). The maximal energies &max
have a finite-N correction of order &,,/+/N, which is why the curves
for &y, still show an N dependence for large N.

B. Chaotic Cavity

As a second example, we consider a chaotic cavity attached
to the end of the superconducting wire, see Fig. 2(b). In this
case, the unitary matrix U is randomly distributed in the unitary
group,* whereas the proper delay times have the probability
distribution*

N
P(r..ty) o [ [0y e Ve [ T — 11, (19)

j=1 i<j

with the average delay time 7. In this case, the matrix U is
not diagonal, and the prescription of Eq. (14) needs to be
used in order to construct the effective Hamiltonian H" for
the low-energy subgap states. As in the previous case, we
could not obtain closed-form expressions for the energies of
the fermionic subgap states and had to resort to a numerical
analysis, in which the unitary matrices U were generated ac-
cording to the Haar measure on the unitary group and the time
delays t; according to the probability distribution given above,
following the method described in Ref. 46. This analysis gives
different results for the limiting cases of a “small cavity” and
a “large cavity,” corresponding to the inverse mean dwell time
h/7 large or small in comparison to the superconducting gap A.

Small-cavity limit. In the small-cavity limit, the normal-
ization of the N Majorana states ") is dominated by the
integration over the superconducting wire. Not counting the

v v
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FIG. 4. (Color online) Level density of fermionic subgap states
for a rectangular stub in the limit of large N, for L/ W = 0.1 (left)
and L/ W = 3 (right). The level density is measured in units of v, =
N/en.
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FIG. 5. (Color online) Level density of fermionic subgap states
in the small-cavity limit (left) and large-cavity limit (right). The level
density is measured in units of vy = N /&g and v; = N /g for the left
and right panels, respectively.

Majorana states, the excitation spectrum of the cavity has a
gap comparable to the bulk excitation gap A. Upon including
H, one obtains N fermionic subgap states, which have a typical
energy

gtyp ~Ey = E, (20)

§

and emax ™~ Eiyp, Emin ™~ Euyp/N. The precise location of the
subgap states depends on the precise scattering matrix of the
cavity. The mean level density for an ensemble of cavities is
shown in the left panel of Fig. 5.

Large-cavity limit. In the large-cavity limit, the overlap
matrix M;; is dominated by the in-cavity parts of the wave
functions, so that the Majorana modes v/ /) are already orthog-
onal and the effective Hamiltonian H}ll) = 1-7](11) //47;7, with
I:Ij(,l) given in Eq. (13). Not counting the Majorana states, the
cavity’s excitation spectrum has a gap of order Er = h/mt,"
where T is the mean dwell time in the cavity. In this case, the
typical energy of the fermionic subgap states is

EtW
s 9
while enax ~ &yp and emin ~ &yp/N. The mean level density

of the subgap states for an ensemble of cavities is shown in the
right panel of Fig. 5.

2y

etyp ~E =

IV. p+ ip MODEL WITH DISORDER

Whereas strong disorder is known to destroy the topological
superconducting phase in the p 4 ip model in one dimension,
weak disorder with mean free path [ > £/2 preserves the
topological phase.>*? In this section we investigate the effect
of weak disorder on the energies of the fermionic subgap
states in a multichannel rectangular p + ip model. Because
the disorder is necessarily weak (strong disorder suppresses
the topological phase), the effect of disorder can be treated in
perturbation theory.

The starting point of our analysis is the chiral-symmetric
Hamiltonian Hj, which has N normalized Majorana bound
states |¢)), j =1,2,...,N at each end of the wire. We
take a rectangular geometry, with a wire end and hard-wall
boundary conditions at x = 0, and take the potential V (r) to
be a Gaussian white noise potential with mean (V (r)) = 0 and
variance

2
VIV () = :—:l(xr — ), 22)
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where [ is the mean free path and vg = hkg/m the Fermi
velocity. In our perturbative analysis we treat both the impurity
potential V' and the transverse superconducting order as
perturbations and write

H=Hy+U, (23)

where U = H, + Hy contains the superconducting correla-
tions coupling to p, as well as the impurity potential.

The effective Hamiltonian H. describing the splitting of
the N Majorana states into fermionic subgap states can be
found using the degenerate perturbation theory of Kato*®
and Bloch.* (For additional details on this methodology see
also Refs. 50 and 51.) Defining P = Y | ) ()| as the
projector onto the zero-energy subspace and Q =1 — P, we
can then write using Bloch’s method

Heff=PUP_PUgUP+PUgUgUP
Hy Hy Hj

_1 <PU%UPUP + PUPU%UP) . (24
2 H; H;
It is essential to note that the disorder potential V(r) alone
cannot lift the degeneracy of the Majorana endstates at any
order of the perturbation theory. This can be understood
directly from the observation that the disorder potential
V(r) does not break the chiral symmetry of the unperturbed
Hamiltonian Hj that is responsible for the N-fold degeneracy.
On the level of perturbation theory this can be understood
immediately through the particle-hole symmetry present in
the Majorana bound states and the knowledge that for each
perturbative diagram that connects Majoranas through the
positive energy bulk states there is a canceling path through
the negative energy states.

Keeping terms to first order in H, and up to second order
in Hy only, we obtain

Hep = HY 4+ g® 4 gGa _ H(3b>, (25)
with
HY =y [Hy| ),
@ _ _ iy 2 0 o
Hjp =—(y" |HyFOHv + HVFOHy| ¥,
Hj(.?a) = (y) |H},2HV2HV| ) + permutations,
Hy ~ Hy
1
(3b) 2) 17 (D) My,(2)
H;™ = 5 Z (ij Hy" + Hj 'V ), (26)
k
where

Vi) =y |HV%HV| y®). 27)
0

The effective Hamiltonian Hg is antisymmetric, which im-
plies that the diagonal elements of all the above terms are
zero. The first-order term H‘D describes how the transverse
superconducting correlations lift the degeneracy of the N
Majorana modes in the absence of disorder. The second-order
term H® is linear in the disorder potential. Its elements are
random variables with zero mean and standard deviation that
does not appreciably change with &. The third order term
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contains two terms, the first of which is also a random variable
with zero mean and with a root-mean-square proportional &.

The term H®® contains corrections to the effective Hamil-
tonian arising from the renormalization and reorthogonaliza-
tion of wave functions at the first order of the perturbation
theory. Since this term is a weighted sum of first order elements
H}II), it is the only one of the higher-order perturbation
corrections that gives a systematic dependence of energies on
the disorder strengths. To see this in more detail, it is instructive
to separate the diagonal and the off-diagonal elements of V®
in the expression for HG®,

1
P = 0 )
* % > (VilHY + HYVE). @)
ktj
The first term here is the most important because the weights
Vk(,f) are positive definite random variables. A simple scaling
analysis predicts that these variables have both mean and
standard deviation proportional to the ratio £// of coherence
length and mean free path. This term effectively renormalizes
the entire first order contribution, on average driving the
energies of the fermionic subgap states towards zero. The
second term, which contains the contribution from the off-
diagonal elements of V@ s less important because the
disorder potential here connects different Majorana modes.
These matrix elements are therefore randomly distributed
with zero mean and a root mean square proportional to the
coherence length.
Motivated by these observations, we write the effective
Hamiltonian in the form

H~ A, [(1 — c%) HY + H’:| ; (29)
where c = (I/N&) ), Vk(,f) is a number of order unity, and

1
H =H® 4+ <H(3a) — E{V(Z) — %,H“)D. (30)

The correction H' has zero mean.

We have numerically diagonalized a lattice version of
the Hamiltonian (2) in order to provide numerical evidence
for the applicability of the above arguments. Details of the
relationship between the continuum and lattice models can
be found in Ref. 27. Results of the numerical simulations
are shown in Fig. 6. For weak disorder, the perturbation
H® dominates the response of the fermionic subgap states,
and the energies of the fermionic subgap states may both
increase or decrease, depending on the specific realization
of the disorder potential. While large fluctuations persist, for
stronger disorder the quadratic-in-disorder perturbation H©®"
leads to a systematic decrease of the energies of the fermionic
subgap states, which is well described by a linear dependence
on £ /1, consistent with the first term in Eq. (29).

V. SMOOTH POTENTIAL AT WIRE’S END

In this section we consider a wire which is terminated
by a smooth potential V(x), as shown schematically in
the inset of Fig. 7. In order to address this scenario we
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FIG. 6. (Color online) Distribution of energies of fermionic
subgap endstates in a spinless p-wave superconductor with N =7
channels (dots), as a function of £//. For small amounts of disorder
the term H'® dominates, pushing the subgap energies up or down
with equal probability. At stronger disorder the term in H®Y oc £/1
eventually dominates and pulls all energy levels towards zero. The
red lines indicate the mean calculated from the local distribution
of eigenvalues. The black lines, which are a linear fit to the mean
values in red, share a common intercept at the horizontal axis
at £/ =c7' =2.2. Dotted black lines indicate the unperturbed
energies. Energies are measured in units of ) = AW?/&>. The
lattice parameters used in the numerical calculation correspond to
krW = 23 and kr& =~ 320.

solve the Bogoliubov-de Gennes Hamiltonian in the WKB
approximation. Without the transverse pairing term H, there
are N Majorana states /) with wave function

) 2 im/4
b ) = \/; <:_m/4)xj(x)sin (%) 31)

10

10

10

0
yp

E/e
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fi
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FIG. 7. (Color online) Energies of fermionic subgap endstates,
in a six-channel p 4 ip wire as a function of the adiabaticity
parameter o (red). The flat black lines indicate the energies for
hard-wall boundary conditions (¢ = 0). Energies are measured in
units of &) | = AW?/£. The lattice parameters used in the numerical
calculation correspond to kpW ~ 19 and kp& ~ 90, a = 5. The

inset shows the potential profile used in the calculations.
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where the functions yx;(x) take the form

€7X/$+/":f dx'k;(x")
— ifx < xj,
2,/QjKj()C) (32)

/% cos[®(x)]
v/ ijj(x)

where ®; = 7/4 — [ dxk;(x"),

2n? 1
kj(x) = \/Zm <[,L - V) — 2mW2) — g,

1 2n?
Kj(x) = g—z —2m (/L — V) - W),

2; is the normalization constant, and x; is the transverse-
mode-dependent classical turning point, defined as the solution
of kj(x;) = 0. Inclusion of the transverse pairing Hamiltonian
H, lifts the degeneracy of the N zero energy Majorana end-
states, where the energy splitting is given by the eigenvalues
of the antisymmetric matrix with elements H;ll) =0if j -1
is even and

g _ 168" L

M @ (3)
i = jz—zz(Xﬂ + X7+ X)) (33)

xj(x) =

if x > xj,

if j — [ is odd, with, for j <,
o X e_ZX/E_f:f dx’/c/(x’)—f:[ dx'i;(x)
X = / dx
—00

4./ QKK ’

Xl —2x/E= [} ki oy
X = [t (34)
x; 2‘/Qj91kjl([
x® /"od e~ 2x/k cos[®(x)] cos[P;(x)]
. = X .
it V@ Quk ik

Figure 7 shows numerical calculations for a lattice version
of the spinless p +ip model, with a potential V(x) =
ae™'/2" | turning the hard-wall ending at x = 0 effectively
into a smooth end. The parameter o tunes the length scale over
which the potential is turned on. The case ¢ — 0 corresponds
to a hard-wall boundary. The prefactor a has the dimension
of energy and determines the height of the potential. For the
calculations shown in the figure, we chose a = 5u. The results
of the figure show a clear exponential dependence on o for
states on the wire end terminated by the smooth function V,
allowing for energies of the subgap states that are significantly
below the (already small) estimates for a rectangular geometry
with hard-wall boundary conditions.

The origin of the anomalously small energy splittings
shown in Fig. 7 is the smoothness of all terms in the
Hamiltonian H. If the p + ip wireis coupled to a normal-metal
stub, as in Sec. III, and the superconducting order parameter
A jumps at the interface x = 0, no reduction of the endstate
energies is found, even if the normal-metal stub is terminated
by a smooth potential. (This scenario is well described by
the calculation of Sec. III.) On the other hand, one finds
a suppression very similar to that shown in Fig. 7 if the
superconducting order parameter goes to zero smoothly at
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the interface. We refer to Ref. 52 for a discussion of the effect
of a smooth confinement in the semiconductor model.

VI. CONCLUSION

In this paper, we have investigated fermionic subgap states
localized near the end of a spinless p-wave superconducting
wires for two terminations of the wire—a normal-metal stub
and a smooth confining potential—and in the presence of
weak disorder. The three scenarios give qualitatively different
estimates for the energies of the subgap states. However, they
share the common feature that a wire with N transverse
channels with a width W that is much smaller than the
superconducting coherence length £ has int (N /2) fermionic
endstates, all with energy much below the bulk excitation gap
A. These states appear for the topological phase (which has
a Majorana fermion at the wire’s end), as well as for the
nontopological phase (which does not).

The appearance of low-energy fermionic endstates poses
an obstacle to the identification of Majorana fermions through
a measurement of the tunneling density of states at the
wire’s end, unless the energy resolution of the experiment
is good enough to resolve the splitting between the fermionic
endstates. The corresponding energy scale en;, scales pro-
portional to A/kg& ~ A?/u in the most favorable scenario
we considered (wire’s end coupled to a small normal metal
stub), which is the same dependence as the subgap states in a
vortex core.*® The important difference with the subgap states
in a vortex core is, however, that the number of fermionic
endstates is limited, so that there exists a maximum energy
€max, Whereas no such maximum energy exists in a vortex.
Other terminations, such as a rectangular end with or without
disorder, or a smooth confinement potential, give significantly
smaller values for ein, and, hence, lead to stricter requirements
for the energy resolution required to separate an eventual
Majorana state from fermionic endstates.

The recent experiments that reported the possible observa-
tion of a Majorana fermion involved semiconductor nanowires
with proximity-induced superconductivity.?>?3 Effectively, the
induced superconductivity in these wires is of spinless p-wave
type. However, it should be emphasized that this does not imply
that the effective description of such a semiconductor wire
with N transverse channels is a p + ip model with the same
number of transverse channels. Instead, only those channels
in the semiconductor that are effectively spinless (i.e., spin
polarized or helical, depending on the relative strength of the
applied magnetic field and the spin-orbit coupling) appear in
the effective description in terms of a p +ip model. (This
latter distinction was overlooked in Ref. 30.) Typically, this
number is smaller than the number of transverse channels in the
semiconductor. In particular, the nanowires of the experiments
of Refs. 22 and 23 are believed to be thin enough that they
map to a single-channel p 4 ip model. Hence, we do not
expect that the mechanism for the generation of fermionic
endstates we consider applies to those experiments. However,
it will apply to nanowires with a larger diameter, which we thus
expect to exhibit a clustering of low-energy fermionic states in
the topologically trivial as well as the topologically nontrivial
phases. In this context, it is important to note that the condition
that W <« & does not a priori prevent the applicability of
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our analysis to thicker wires, because the effective pairing
potential A may decrease with W for proximity-induced
superconductivity in the limit of thick wires (see Ref. 17 for
an example in which A oc W),
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APPENDIX A: RELATIONSHIP BETWEEN THE p + ip AND
PROXIMITY COUPLED SEMI-CONDUCTOR MODELS

A practical realization of a the p + ip model can be found
in semiconducting nanowires with strong spin-orbit coupling,
laterally coupled to a standard s-wave superconductor and
subject to a Zeeman field. In the following we discuss the
precise relationship between the models. A related discussion
can also be found in Ref. 14.

In two dimensions, and without coupling to the supercon-
ductor, the Hamiltonian for this system reads

2
Hy = L w~+ Bo, +aoyp, — ooy py,
2m
where o and o’ set the strength of the spin-orbit coupling
and B > 0 is the Zeeman energy of the applied magnetic
field. In the limit of a narrow wire (width W much smaller
than the coherence length £ of the induced superconductivity),
subgap states as well as the above-gap quasiparticle states have
a vanishing expectation value of the transverse momentum
ky, which allows us to treat the transverse spin obit term
as a perturbation, initially setting o’ = 0. Without the term
proportional to ¢’ different transverse channels do not couple
to each other and the eigenfunctions of the Hamiltonian Hy
are of the form

(AD)

YE() (eilfk ) \/Lwe”” sin ”—;/y (A2)
where the angle 6; is defined as
sinf = —2F k= —DB (a3
VB2 +o2k? VB? + o%k?
and the corresponding energies are
et = BE | Bpin? wt VB + a2k (Ad)

o 2m 2mW?

Upon laterally coupling the semiconductor wire to an
s-wave superconductor, the excitations are described by the
Bogoliubov-de Gennes Hamiltonian

_ HN AO'y
Haaa = <Aa, —Hg)

!
—a oy py + Aoy Ty,

»?
= <% — u+ Bo, +aoypx) 7,

(A5)

where 7, 7,, and 7, are Pauli matrices in electron-hole
space. Without the transverse spin-orbit coupling «’, the
Bogoliubov-de Gennes Hamiltonian has a chiral symmetry,
7y Ht, = —H. In the basis of the normal-state eigenfunctions
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1//i the Bogoliubov-de Gennes Hamiltonian (AS) takes the

n,k>
form

R’k RPnn?
Hpac = (— + — u) 7. + 0,1,V B% + a?k?

2m 2m w2
+ Aoyt cos O + Ao, T, sin b

— o' py(o; cos O + oy sinby). (A6)

In the limit, when both A and the spin orbit energy are
smaller than the Zeeman splitting, the s-wave pairing term
proportional to o, is ineffective, and each transverse channel
separately maps to two spinless p-wave superconductors, one
for 1//,:r « and one for ¥, . Neglecting |ak| in comparison to
B, the’corresponding pairing term A sin 60,7, & —A’ko, T,
with

AN=——.

B

Without the term proportional to o, the transverse channels
in Eq. (A6) can be treated independently (at least in the bulk
of the wire, see below). If © < B, only the “—” channels
(eigenspinors of o, with eigenvalue —1) in Eq. (A6) are
topologically nontrivial and can possibly have endstates.’
Projecting the Bogoliubov-de Gennes Hamiltonian in the
rotated basis (A6) onto these channels, one finds an effective
Hamiltonian of the form

oif nk* hPm’n?
H = (— 4+ ——
BIG ™\ 2m ~ 2mw?

(A7)

- - B) 7, + A'hkt, +d'py ,
(A8)

Without the transverse spin-orbit coupling o', the effective
Hamiltonian (A8) has chiral symmetry and N Majorana
endstates at each end of the wire. The chiral symmetry is
broken by the transverse spin-orbit coupling «’. Because of
the particle-hole symmetry of the Majorana modes, the matrix
elements of this perturbation between the N Majorana endstate
of H, ggG with &’ = 0 are the same as the matrix elements of the
p-wave superconducting pairing H, of Eq. (2), if we identify
A" = o in the expression for H,.

If the condition u < B is not met, the relation between the
semiconductor and p + ip models is more complicated. For
transverse channels for which A272n%/2mW? < u — B the
wire ends represent a chiral-symmetry-preserving perturbation
that gaps out eventual Majorana endstates, so that such
channels may be disregarded when considering low-energy
endstates. For transverse channels for which

h2n2n2

- B’
mwr P

the Majorana endstate in the “— band” (eigenspinors of o,
at eigenvalue —1 in the rotated basis) is protected in the
presence of the chiral symmetry, and only perturbations that
lift the chiral symmetry can lead to a splitting of these
endstates. Projecting the Bogoliubov-de Gennes Hamiltonian
in the rotated basis (A6) onto these channels, one finds again
an effective Hamiltonian of the form Eq. (AS8), but with
the additional restriction that only those transverse channels
that meet the condition (A9) are considered. The number
N of transverse channels that meet this condition may be
smaller than the original number of propagating channels in
the semiconductor.

uw—B < (A9)
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FIG. 8. (Color online) Top: Distribution of energies of fermionic
subgap endstates in a spinless p-wave superconductor with N =
7 channels, as a function of £/I. The red lines indicate the mean
calculated from the local distribution of eigenvalues. The black lines,
which are a linear fit to the mean values in red, share a common
intercept at the horizontal axis at £ /I = ¢~! = 0.7. Dotted black lines
indicate the unperturbed energies. Energies here are measured in
units of the bulk gap. The lattice parameters used in the numerical
calculation correspond to kW = kp& == 23.5. Bottom: Energies of
fermionic subgap endstates, in a five-channel p 4 ip wire as function
of the adiabaticity parameter o (red). (See Sec. V for the definition of
o.) The flat black lines indicate the energies for hard-wall boundary
conditions (o0 = 0). New endstates (blue dashed) are formed just
below the bulk gap, availing of the smaller local gap near the wire’s
end. All energies are measured in units of the bulk gap. The lattice
parameters used in the numerical calculation correspond to kp W =
krE ~ 1475 and a = 5u.
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APPENDIX B: THE CASE W ~ &

The results of the main text were derived for the case
W « &, wire width much smaller than the superconduct-
ing coherence length. This is the appropriate limit if the
induced superconductivity is weak. It applies, e.g., in the
semiconductor model if there is a barrier interface between
the superconductor and the semiconductor nanowire, which
suppresses the strength of the induced superconductivity and,
hence, increases &. The limit W <« & ensures that all int (N /2)
fermionic subgap states have energy well below the bulk gap
A. For wider wires, the condition W <« § may be violated
(but this is not necessarily so, see Sec. VI), although the
lowest-energy states remain localized near the wire’s ends as
long as W < &. (For W > &, the lowest-energy subgap states
are extended along the wire’s edges.?’%%)

In this Appendix we now discuss how our results are
modified when W and & become comparable. Our discussion
must be limited to ey, because the energies of the fermionic
states extend up to and into the bulk spectrum if W 2 &, so
that the energy scales ¢, and emax have lost their meaning.
For the case of a p + ip superconductor with a normal-metal
stub, which was discussed in Sec. 111, we have verified that our
estimates for ey, remain qualitatively valid up to W ~ &.
A numerical investigation similar to that of Fig. 6 shows
that the lowest fermionic subgap levels in a p + ip model
with a rectangular ending are only weakly dependent on
disorder, and on the average decrease with a common factor
(1 — c&/1), although the value numerical constant ¢ differs
from that obtained in the limit W <« & of the main text.
An example is shown in the top panel of Fig. 8. Finally,
with a smooth confinement at the wire’s end, the energies
of the lowest-lying fermionic subgap states are strongly
suppressed, in a way very similar to what is shown in Fig. 7
for the case W « &, see the bottom panel of Fig. 8 for a
representative example. An essential difference with the case
W « &, however, is the absence of a region of the spectrum
in which there are no states. Instead, discrete endstates appear
throughout the entire subgap range 0 < ¢ < A, and whereas
all endstates lower their energy upon making the confinement
smoother, new endstates are formed just below the bulk
gap, utilizing the reduced value of the local gap near the
wire’s end that results from the termination with a smooth
potential.
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