7 research outputs found

    Passenger car data – a new source of real-time weather information for nowcasting, forecasting, and road safety

    Get PDF
    Presentación realizada en la 3rd European Nowcasting Conference, celebrada en la sede central de AEMET en Madrid del 24 al 26 de abril de 2019

    Mercury plumes in the global upper troposphere observed during flights with the CARIBIC observatory from May 2005 until June 2013

    Get PDF
    Tropospheric sections of flights with the CARIBIC (Civil Aircraft for Regular Investigation of the Atmosphere Based on an Instrumented Container) observatory from May 2005 until June 2013, are investigated for the occurrence of plumes with elevated Hg concentrations. Additional information on CO, CO, CH, NO, O, hydrocarbons, halocarbons, acetone and acetonitrile enable us to attribute the plumes to biomass burning, urban/industrial sources or a mixture of both. Altogether, 98 pollution plumes with elevated Hg concentrations and CO mixing ratios were encountered, and the Hg/CO emission ratios for 49 of them could be calculated. Most of the plumes were found overEast Asia, in the African equatorial region, over South America and over Pakistan and India. The plumes encountered over equatorial Africa and over South America originate predominantly from biomass burning, as evidenced by the low Hg/CO emission ratios andelevated mixing ratios of acetonitrile, CHCl and particle concentrations. The backward trajectories point to the regions around the Rift Valley and the Amazon Basin, with its outskirts, as the source areas. The plumes encountered over East Asia and over Pakistan and India are predominantly of urban/industrial origin, sometimes mixed with products of biomass/biofuel burning. Backward trajectories point mostly to source areas in China andnorthern India. The Hg/CO and Hg/CH emission ratios for several plumes are also presented and discussed

    Strong impact of wildfires on the abundance and aging of black carbon in the lowermost stratosphere

    Get PDF
    Wildfires inject large amounts of black carbon (BC) particles into the atmosphere, which can reach the lowermost stratosphere (LMS) and cause strong radiative forcing. During a 14-month period of observations on board a passenger aircraft flying between Europe and North America, we found frequent and widespread biomass burning (BB) plumes, influencing 16 of 160 flight hours in the LMS. The average BC mass concentrations in these plumes (∼140 ng·m−3^{-3}, standard temperature and pressure) were over 20 times higher than the background concentration (∼6 ng·m−3^{-3}) with more than 100-fold enhanced peak values (up to ∼720 ng·m−3^{-3}). In the LMS, nearly all BC particles were covered with a thick coating. The average mass equivalent diameter of the BC particle cores was ∼120 nm with a mean coating thickness of ∼150 nm in the BB plume and ∼90 nm with a coating of ∼125 nm in the background. In a BB plume that was encountered twice, we also found a high diameter growth rate of ∼1 nm·h−1^{-1} due to the BC particle coatings. The observed high concentrations and thick coatings of BC particles demonstrate that wildfires can induce strong local heating in the LMS and may have a significant influence on the regional radiative forcing of climate

    Energetic particle precipitation in ECHAM5/MESSy – Part 2: Solar proton events

    Get PDF
    The atmospheric chemistry general circulation model ECHAM5/MESSy (EMAC) has been extended by processes that parameterize particle precipitation. Several types of particle precipitation that directly affect NOy and HOx concentrations in the middle atmosphere are accounted for and discussed in a series of papers. In part 1, the EMAC parameterization for NOx produced in the upper atmosphere by low-energy electrons is presented. Here, we discuss production of NOy and HOx associated with Solar Proton Events (SPEs). A submodel that parameterizes the effects of precipitating protons, based on flux measurements by instruments on the IMP or GOES satellites, was added to the EMAC model. Production and transport of NOy and HOx, as well as effects on other chemical species and dynamics during the 2003 Halloween SPEs are presented. Comparisons with MIPAS/ENVISAT measurements of a number of species affected by the SPE are shown and discussed. There is good agreement for NO2, but a severe disagreement is found for N2O similar to other studies. We discuss the effects of an altitude dependence of the N/NO production rate on the N2O and NOy changes during the SPE. This yields a modified parameterization that shows mostly good agreement between MIPAS and model results for NO2, N2O, O3, and HOCl. With the ability of EMAC to relax the model meteorology to observations, accurate assessment of total column ozone loss is also possible, yielding a loss of approximately 10 DU at the end of November. Discrepancies remain for HNO3, N2O5, and ClONO2, which are likely a consequence from the missing cluster ion chemistry and ion-ion recombination in the EMAC model as well as known issues with the model's NOy partitioning

    Development cycle 2 of the Modular Earth Submodel System (MESSy2)

    Get PDF
    The Modular Earth Submodel System (MESSy) is an open, multi-institutional project providing a strategy for developing comprehensive Earth System Models (ESMs) with highly flexible complexity. The first version of the MESSy infrastructure and process submodels, mainly focusing on atmospheric chemistry, has been successfully coupled to an atmospheric General Circulation Model (GCM) expanding it into an Atmospheric Chemistry GCM (AC-GCM) for nudged simulations and into a Chemistry Climate Model (CCM) for climate simulations. Here, we present the second development cycle of MESSy, which comprises (1) an improved and extended infrastructure for the basemodel independent coupling of process-submodels, (2) new, highly valuable diagnostic capabilities for the evaluation with observational data and (3) an improved atmospheric chemistry setup. With the infrastructural changes, we place the headstone for further model extensions from a CCM towards a comprehensive ESM. The new diagnostic submodels will be used for regular re-evaluations of the continuously further developing model system. The updates of the chemistry setup are briefly evaluated

    The atmospheric chemistry box model CAABA/MECCA-4.0gmdd

    No full text
    We present version 4.0gmdd of the atmospheric chemistry box model CAABA/MECCA which now includes a number of new features: (i) skeletal mechanism reduction, (ii) the MOM chemical mechanism for volatile organic compounds, (iii) an option to include reactions from the Master Chemical Mechanism (MCM) and other chemical mechanisms, (iv) updated isotope tagging, and (v) improved and new photolysis modules (JVAL, RADJIMT, DISSOC). Further, when MECCA is connected to a global model, the new feature of coexisting multiple chemistry mechanisms (PolyMECCA/CHEMGLUE) can be used. Additional changes have been implemented to make the code more user-friendly and to facilitate the analysis of the model results. Like earlier versions, CAABA/MECCA-4.0gmdd is a community model published under the GNU General Public License
    corecore