636 research outputs found

    Short Communications: Short technical description of the MonA and PotLab colorimeters

    Get PDF

    Evidence for a continuum limit in causal set dynamics

    Get PDF
    We find evidence for a continuum limit of a particular causal set dynamics which depends on only a single ``coupling constant'' pp and is easy to simulate on a computer. The model in question is a stochastic process that can also be interpreted as 1-dimensional directed percolation, or in terms of random graphs.Comment: 24 pages, 19 figures, LaTeX, adjusted terminolog

    Causal Sets: Quantum gravity from a fundamentally discrete spacetime

    Get PDF
    In order to construct a quantum theory of gravity, we may have to abandon certain assumptions we were making. In particular, the concept of spacetime as a continuum substratum is questioned. Causal Sets is an attempt to construct a quantum theory of gravity starting with a fundamentally discrete spacetime. In this contribution we review the whole approach, focusing on some recent developments in the kinematics and dynamics of the approach.Comment: 10 pages, review of causal sets based on talk given at the 1st MCCQG conferenc

    The structure of causal sets

    Get PDF
    More often than not, recently popular structuralist interpretations of physical theories leave the central concept of a structure insufficiently precisified. The incipient causal sets approach to quantum gravity offers a paradigmatic case of a physical theory predestined to be interpreted in structuralist terms. It is shown how employing structuralism lends itself to a natural interpretation of the physical meaning of causal sets theory. Conversely, the conceptually exceptionally clear case of causal sets is used as a foil to illustrate how a mathematically informed rigorous conceptualization of structure serves to identify structures in physical theories. Furthermore, a number of technical issues infesting structuralist interpretations of physical theories such as difficulties with grounding the identity of the places of highly symmetrical physical structures in their relational profile and what may resolve these difficulties can be vividly illustrated with causal sets.Comment: 19 pages, 4 figure

    Turning big bang into big bounce: II. Quantum dynamics

    Full text link
    We analyze the big bounce transition of the quantum FRW model in the setting of the nonstandard loop quantum cosmology (LQC). Elementary observables are used to quantize composite observables. The spectrum of the energy density operator is bounded and continuous. The spectrum of the volume operator is bounded from below and discrete. It has equally distant levels defining a quantum of the volume. The discreteness may imply a foamy structure of spacetime at semiclassical level which may be detected in astro-cosmo observations. The nonstandard LQC method has a free parameter that should be fixed in some way to specify the big bounce transition.Comment: 14 pages, no figures, version accepted for publication in Class. Quant. Gra

    Stationary states and phase diagram for a model of the Gunn effect under realistic boundary conditions

    Get PDF
    A general formulation of boundary conditions for semiconductor-metal contacts follows from a phenomenological procedure sketched here. The resulting boundary conditions, which incorporate only physically well-defined parameters, are used to study the classical unipolar drift-diffusion model for the Gunn effect. The analysis of its stationary solutions reveals the presence of bistability and hysteresis for a certain range of contact parameters. Several types of Gunn effect are predicted to occur in the model, when no stable stationary solution exists, depending on the value of the parameters of the injecting contact appearing in the boundary condition. In this way, the critical role played by contacts in the Gunn effect is clearly stablished.Comment: 10 pages, 6 Post-Script figure

    Semiclassical Mechanics of the Wigner 6j-Symbol

    Full text link
    The semiclassical mechanics of the Wigner 6j-symbol is examined from the standpoint of WKB theory for multidimensional, integrable systems, to explore the geometrical issues surrounding the Ponzano-Regge formula. The relations among the methods of Roberts and others for deriving the Ponzano-Regge formula are discussed, and a new approach, based on the recoupling of four angular momenta, is presented. A generalization of the Yutsis-type of spin network is developed for this purpose. Special attention is devoted to symplectic reduction, the reduced phase space of the 6j-symbol (the 2-sphere of Kapovich and Millson), and the reduction of Poisson bracket expressions for semiclassical amplitudes. General principles for the semiclassical study of arbitrary spin networks are laid down; some of these were used in our recent derivation of the asymptotic formula for the Wigner 9j-symbol.Comment: 64 pages, 50 figure

    Noncommutative Geometry as a Regulator

    Get PDF
    We give a perturbative quantization of space-time R4R^4 in the case where the commutators Cμν=[Xμ,Xν]C^{{\mu}{\nu}}=[X^{\mu},X^{\nu}] of the underlying algebra generators are not central . We argue that this kind of quantum space-times can be used as regulators for quantum field theories . In particular we show in the case of the ϕ4{\phi}^4 theory that by choosing appropriately the commutators CμνC^{{\mu}{\nu}} we can remove all the infinities by reproducing all the counter terms . In other words the renormalized action on R4R^4 plus the counter terms can be rewritten as only a renormalized action on the quantum space-time QR4QR^4 . We conjecture therefore that renormalization of quantum field theory is equivalent to the quantization of the underlying space-time R4R^4 .Comment: Latex, 30 pages, no figures,typos corrected,references added . Substantial amount of rewriting of the last section . Final interesting remarks added at the end of the pape
    corecore