103 research outputs found

    Simulating the Common Envelope Phase of a Red Giant Using SPH and Uniform Grid Codes

    Full text link
    We use three-dimensional hydrodynamical simulations to study the rapid infall phase of the common envelope interaction of a red giant branch star of mass equal to 0.88 \msun and a companion star of mass ranging from 0.9 down to 0.1 \msun. We first compare the results obtained using two different numerical techniques with different resolutions, and find overall very good agreement. We then compare the outcomes of those simulations with observed systems thought to have gone through a common envelope. The simulations fail to reproduce those systems in the sense that most of the envelope of the donor remains bound at the end of the simulations and the final orbital separations between the donor's remnant and the companion, ranging from 26.8 down to 5.9 \rsun, are larger than the ones observed. We suggest that this discrepancy vouches for recombination playing an essential role in the ejection of the envelope and/or significant shrinkage of the orbit happening in the subsequent phase.Comment: 45 pages, 19 figures, accepted to Ap

    High-Resolution Snow Depth on Arctic Sea Ice From Low-Altitude Airborne Microwave Radar Data

    Get PDF
    We present new high-resolution snow depth data on Arctic sea ice derived from airborne microwave radar measurements from the IceBird campaigns of the Alfred Wegener Institute (AWI) together with a new retrieval method using signal peakiness based on an intercomparison exercise of colocated data at different altitudes. We aim to demonstrate the capabilities and potential improvements of radar data, which were acquired at a lower altitude (200 ft) and slower speed (110 kn) and had a smaller radar footprint size (2-m diameter) than previous airborne snow radar data. So far, AWI Snow Radar data have been derived using a 2-18-GHz ultrawideband frequency-modulated continuous-wave (FMCW) radar in 2017-2019. Our results show that our method in combination with thorough calibration through coherent noise removal and system response deconvolution significantly improves the quality of the radar-derived snow depth data. The validation against a 2-D grid of in situ snow depth measurements on level landfast first-year ice indicates a mean bias of only 0.86 cm between radar and ground truth. Comparison between the radar-derived snow depth estimates from different altitudes shows good consistency. We conclude that the AWI Snow Radar aboard the IceBird campaigns is able to measure the snow depth on Arctic sea ice accurately at higher spatial resolution than but consistent with the existing airborne snow radar data of NASA Operation IceBridge. Together with the simultaneous measurements of the total ice thickness and surface freeboard, the IceBird campaign data will be able to describe the whole sea-ice column on regional scales

    Rates and Delay Times of Type Ia Supernovae

    Full text link
    We analyze the evolution of binary stars to calculate synthetic rates and delay times of the most promising Type Ia Supernovae progenitors. We present and discuss evolutionary scenarios in which a white dwarf reaches the Chandrasekhar-mass and potentially explodes in a Type Ia supernova. We consider: Double Degenerate (DDS), Single Degenerate (SDS), and AM Canum Venaticorum scenarios. The results are presented for two different star formation histories; burst (elliptical-like galaxies) and continuous (spiral-like galaxies). It is found that delay times for the DDS in our standard model (with common envelope efficiency alpha = 1) follow a power-law distribution. For the SDS we note a wide range of delay times, while AM CVn progenitors produce a short burst of SNe Ia at early times. We point out that only the rates for two merging carbon-oxygen white dwarfs, the only systems found in the DDS, are consistent with the observed rates for typical Milky Way-like spirals. We also note that DDS progenitors are the dominant population in elliptical galaxies. The fact that the delay time distribution for the DDS follows a power-law implies more Type Ia supernovae (per unit mass) in young rather than in aged populations. Our results do not exclude other scenarios, but strongly indicate that the DDS is the dominant channel generating SNe Ia in spiral galaxies, at least in the framework of our adopted evolutionary models. Since it is believed that white dwarf mergers cannot produce a thermonuclear explosion given the current understanding of accreting white dwarfs, either the evolutionary calculations along with accretion physics are incorrect, or the explosion calculations are inaccurate and need to be revisited (Abridged).Comment: 14 pages, 2 tables, 3 figures, submitted to Ap

    Snow depth on Arctic sea ice derived from airborne radar measurements

    Get PDF
    The snow layer on sea ice has high importance for polar climate as it affects heat, radiation, and fresh-water budgets. Additionally, snow loading is a critical parameter for the sea-ice freeboard-to-thickness conversion for satellite radar and laser altimeters. Despite its importance, there is a lack of snow observations spanning different spatial and temporal scales, thus introducing a significant source of uncertainty to altimetric sea-ice thickness retrievals. The ultra-wideband microwave radar (UWBM) Snow Radar, a 2–18 GHz airborne frequency-modulated continuous-wave (FMCW) radar developed by the Center for Remote Sensing of Ice Sheets (CReSIS) at the University of Kansas, can accurately detect the air/snow and snow/ice interfaces to measure snow thickness. Since 2009, an airborne Snow Radar has been operated onboard NASA’s Operation IceBridge (OIB) campaigns. In 2017, the UWBM Snow Radar was operated for the first time on an Alfred Wegener Institute (AWI) research aircraft, together with an airborne laser scanner for surface topography and freeboard measurements and an electromagnetic induction sounding instrument (EM Bird) to measure total ice thickness. The AWI airborne surveys operate at a low survey altitude (60 m a.g.l.) and slow aircraft speed, enabling fine-resolution mapping of the snow layer. Furthermore, the unique instrument setup on board the AWI research aircraft and the concurrent measurements of snow freeboard, total sea-ice thickness and snow depth allow us to directly investigate the freeboard-to-thickness conversion on regional scales for the first time. Here, we evaluate the performance of the radar installation and present radar-derived snow depth retrieved with a wavelet technique from recent airborne campaigns, PAMARCMiP2017 and IceBird winter 2019, over Arctic sea ice in the Greenland, Lincoln, Beaufort and Chukchi Seas and the central Arctic Ocean in March–April of the respective years

    The Kepler-10 planetary system revisited by HARPS-N: A hot rocky world and a solid Neptune-mass planet

    Get PDF
    Kepler-10b was the first rocky planet detected by the Kepler satellite and con- firmed with radial velocity follow-up observations from Keck-HIRES. The mass of the planet was measured with a precision of around 30%, which was insufficient to constrain models of its internal structure and composition in detail. In addition to Kepler-10b, a second planet transiting the same star with a period of 45 days was sta- tistically validated, but the radial velocities were only good enough to set an upper limit of 20 Mearth for the mass of Kepler-10c. To improve the precision on the mass for planet b, the HARPS-N Collaboration decided to observe Kepler-10 intensively with the HARPS-N spectrograph on the Telescopio Nazionale Galileo on La Palma. In to- tal, 148 high-quality radial-velocity measurements were obtained over two observing seasons. These new data allow us to improve the precision of the mass determina- tion for Kepler-10b to 15%. With a mass of 3.33 +/- 0.49 Mearth and an updated radius of 1.47 +0.03 -0.02 Rearth, Kepler-10b has a density of 5.8 +/- 0.8 g cm-3, very close to the value -0.02 predicted by models with the same internal structure and composition as the Earth. We were also able to determine a mass for the 45-day period planet Kepler-10c, with an even better precision of 11%. With a mass of 17.2 +/- 1.9 Mearth and radius of 2.35 +0.09 -0.04 Rearth, -0.04 Kepler-10c has a density of 7.1 +/- 1.0 g cm-3. Kepler-10c appears to be the first strong evidence of a class of more massive solid planets with longer orbital periods.Comment: 44 pages, 8 figures, accepted for publication in Ap

    Genetic Evidence on the Origins of Indian Caste Populations

    Get PDF
    This is the published version, also available here: http://www.dx.doi.org/10.1101/gr.173301.The origins and affinities of the ∼1 billion people living on the subcontinent of India have long been contested. This is owing, in part, to the many different waves of immigrants that have influenced the genetic structure of India. In the most recent of these waves, Indo-European-speaking people from West Eurasia entered India from the Northwest and diffused throughout the subcontinent. They purportedly admixed with or displaced indigenous Dravidic-speaking populations. Subsequently they may have established the Hindu caste system and placed themselves primarily in castes of higher rank. To explore the impact of West Eurasians on contemporary Indian caste populations, we compared mtDNA (400 bp of hypervariable region 1 and 14 restriction site polymorphisms) and Y-chromosome (20 biallelic polymorphisms and 5 short tandem repeats) variation in ∼265 males from eight castes of different rank to ∼750 Africans, Asians, Europeans, and other Indians. For maternally inherited mtDNA, each caste is most similar to Asians. However, 20%–30% of Indian mtDNA haplotypes belong to West Eurasian haplogroups, and the frequency of these haplotypes is proportional to caste rank, the highest frequency of West Eurasian haplotypes being found in the upper castes. In contrast, for paternally inherited Y-chromosome variation each caste is more similar to Europeans than to Asians. Moreover, the affinity to Europeans is proportionate to caste rank, the upper castes being most similar to Europeans, particularly East Europeans. These findings are consistent with greater West Eurasian male admixture with castes of higher rank. Nevertheless, the mitochondrial genome and the Y chromosome each represents only a single haploid locus and is more susceptible to large stochastic variation, bottlenecks, and selective sweeps. Thus, to increase the power of our analysis, we assayed 40 independent, biparentally inherited autosomal loci (1 LINE-1 and 39 Alu elements) in all of the caste and continental populations (∼600 individuals). Analysis of these data demonstrated that the upper castes have a higher affinity to Europeans than to Asians, and the upper castes are significantly more similar to Europeans than are the lower castes. Collectively, all five datasets show a trend toward upper castes being more similar to Europeans, whereas lower castes are more similar to Asians. We conclude that Indian castes are most likely to be of proto-Asian origin with West Eurasian admixture resulting in rank-related and sex-specific differences in the genetic affinities of castes to Asians and Europeans

    Catching Element Formation In The Act

    Full text link
    Gamma-ray astronomy explores the most energetic photons in nature to address some of the most pressing puzzles in contemporary astrophysics. It encompasses a wide range of objects and phenomena: stars, supernovae, novae, neutron stars, stellar-mass black holes, nucleosynthesis, the interstellar medium, cosmic rays and relativistic-particle acceleration, and the evolution of galaxies. MeV gamma-rays provide a unique probe of nuclear processes in astronomy, directly measuring radioactive decay, nuclear de-excitation, and positron annihilation. The substantial information carried by gamma-ray photons allows us to see deeper into these objects, the bulk of the power is often emitted at gamma-ray energies, and radioactivity provides a natural physical clock that adds unique information. New science will be driven by time-domain population studies at gamma-ray energies. This science is enabled by next-generation gamma-ray instruments with one to two orders of magnitude better sensitivity, larger sky coverage, and faster cadence than all previous gamma-ray instruments. This transformative capability permits: (a) the accurate identification of the gamma-ray emitting objects and correlations with observations taken at other wavelengths and with other messengers; (b) construction of new gamma-ray maps of the Milky Way and other nearby galaxies where extended regions are distinguished from point sources; and (c) considerable serendipitous science of scarce events -- nearby neutron star mergers, for example. Advances in technology push the performance of new gamma-ray instruments to address a wide set of astrophysical questions.Comment: 14 pages including 3 figure

    Wind redistribution of snow impacts the Ka- and Ku-band radar signatures of Arctic sea ice

    Get PDF
    Wind-driven redistribution of snow on sea ice alters its topography and microstructure, yet the impact of these processes on radar signatures is poorly understood. Here, we examine the effects of snow redistribution over Arctic sea ice on radar waveforms and backscatter signatures obtained from a surface-based, fully polarimetric Ka- and Ku-band radar at incidence angles between 0∘ (nadir) and 50∘. Two wind events in November 2019 during the Multidisciplinary drifting Observatory for the Study of Arctic Climate (MOSAiC) expedition are evaluated. During both events, changes in Ka- and Ku-band radar waveforms and backscatter coefficients at nadir are observed, coincident with surface topography changes measured by a terrestrial laser scanner. At both frequencies, redistribution caused snow densification at the surface and the uppermost layers, increasing the scattering at the air–snow interface at nadir and its prevalence as the dominant radar scattering surface. The waveform data also detected the presence of previous air–snow interfaces, buried beneath newly deposited snow. The additional scattering from previous air–snow interfaces could therefore affect the range retrieved from Ka- and Ku-band satellite altimeters. With increasing incidence angles, the relative scattering contribution of the air–snow interface decreases, and the snow–sea ice interface scattering increases. Relative to pre-wind event conditions, azimuthally averaged backscatter at nadir during the wind events increases by up to 8 dB (Ka-band) and 5 dB (Ku-band). Results show substantial backscatter variability within the scan area at all incidence angles and polarizations, in response to increasing wind speed and changes in wind direction. Our results show that snow redistribution and wind compaction need to be accounted for to interpret airborne and satellite radar measurements of snow-covered sea ice

    Wind redistribution of snow impacts the Ka- and Ku-band radar signatures of Arctic sea ice

    Get PDF
    Wind-driven redistribution of snow on sea ice alters its topography and microstructure, yet the impact of these processes on radar signatures is poorly understood. Here, we examine the effects of snow redistribution over Arctic sea ice on radar waveforms and backscatter signatures obtained from a surface-based, fully polarimetric Ka- and Ku-band radar at incidence angles between 0∘ (nadir) and 50∘. Two wind events in November 2019 during the Multidisciplinary drifting Observatory for the Study of Arctic Climate (MOSAiC) expedition are evaluated. During both events, changes in Ka- and Ku-band radar waveforms and backscatter coefficients at nadir are observed, coincident with surface topography changes measured by a terrestrial laser scanner. At both frequencies, redistribution caused snow densification at the surface and the uppermost layers, increasing the scattering at the air–snow interface at nadir and its prevalence as the dominant radar scattering surface. The waveform data also detected the presence of previous air–snow interfaces, buried beneath newly deposited snow. The additional scattering from previous air–snow interfaces could therefore affect the range retrieved from Ka- and Ku-band satellite altimeters. With increasing incidence angles, the relative scattering contribution of the air–snow interface decreases, and the snow–sea ice interface scattering increases. Relative to pre-wind event conditions, azimuthally averaged backscatter at nadir during the wind events increases by up to 8 dB (Ka-band) and 5 dB (Ku-band). Results show substantial backscatter variability within the scan area at all incidence angles and polarizations, in response to increasing wind speed and changes in wind direction. Our results show that snow redistribution and wind compaction need to be accounted for to interpret airborne and satellite radar measurements of snow-covered sea ice

    Vetting of 384 TESS Objects of Interest with TRICERATOPS and Statistical Validation of 12 Planet Candidates

    Full text link
    We present TRICERATOPS, a new Bayesian tool that can be used to vet and validate TESS Objects of Interest (TOIs). We test the tool on 68 TOIs that have been previously confirmed as planets or rejected as astrophysical false positives. By looking in the false positive probability (FPP) -- nearby false positive probability (NFPP) plane, we define criteria that TOIs must meet to be classified as validated planets (FPP < 0.015 and NFPP < 10^-3), likely planets (FPP 10^-1). We apply this procedure on 384 unclassified TOIs and statistically validate 12, classify 125 as likely planets, and classify 52 as likely nearby false positives. Of the 12 statistically validated planets, 9 are newly validated. TRICERATOPS is currently the only TESS vetting and validation tool that models transits from nearby contaminant stars in addition to the target star. We therefore encourage use of this tool to prioritize follow-up observations that confirm bona fide planets and identify false positives originating from nearby stars.Comment: Accepted to A
    • …
    corecore