24,026 research outputs found

    Topological Aspects of Spin and Statistics in Nonlinear Sigma Models

    Full text link
    We study the purely topological restrictions on allowed spin and statistics of topological solitons in nonlinear sigma models. Taking as space the connected dd-manifold XX, and considering nonlinear sigma models with the connected manifold MM as target space, topological solitons are given by elements of pid(M)pi_d(M). Any topological soliton απd(M)\alpha \in \pi_d(M) determines a quotient \Stat_n(X,\alpha) of the group of framed braids on XX, such that choices of allowed statistics for solitons of type α\alpha are given by unitary representations of \Stat_n(X,\alpha) when nn solitons are present. In particular, when M=S2M = S^2, as in the O(3)O(3) nonlinear sigma model with Hopf term, and απ2(S2)\alpha \in \pi_2(S^2) is a generator, we compute that \Stat_n(\R^2,\alpha) = \Z, while \Stat_n(S^2,\alpha) = \Z_{2n}. It follows that phase exp(iθ)\exp(i\theta) for interchanging two solitons of type α\alpha on S2S^2 must satisfy the constraint θ=kπ/n\theta = k\pi/n, kZk \in \Z, when nn such solitons are present.Comment: 14 page

    A comparison of soil moisture characteristics predicted by the Arya-Paris model with laboratory-measured data

    Get PDF
    Soil moisture characteristics predicted by the Arya-Paris model were compared with the laboratory measured data for 181 New Jersey soil horizons. For a number of soil horizons, the predicted and the measured moisture characteristic curves are almost coincident; for a large number of other horizons, despite some disparity, their shapes are strikingly similar. Uncertainties in the model input and laboratory measurement of the moisture characteristic are indicated, and recommendations for additional experimentation and testing are made

    Phase--coherence Effects in Antidot Lattices: A Semiclassical Approach to Bulk Conductivity

    Full text link
    We derive semiclassical expressions for the Kubo conductivity tensor. Within our approach the oscillatory parts of the diagonal and Hall conductivity are given as sums over contributions from classical periodic orbits in close relation to Gutzwiller's trace formula for the density of states. Taking into account the effects of weak disorder and temperature we reproduce recently observed anomalous phase coherence oscillations in the conductivity of large antidot arrays.Comment: 11 pages, 2 figures available under request, RevTe

    Integrated control-system design via generalized LQG (GLQG) theory

    Get PDF
    Thirty years of control systems research has produced an enormous body of theoretical results in feedback synthesis. Yet such results see relatively little practical application, and there remains an unsettling gap between classical single-loop techniques (Nyquist, Bode, root locus, pole placement) and modern multivariable approaches (LQG and H infinity theory). Large scale, complex systems, such as high performance aircraft and flexible space structures, now demand efficient, reliable design of multivariable feedback controllers which optimally tradeoff performance against modeling accuracy, bandwidth, sensor noise, actuator power, and control law complexity. A methodology is described which encompasses numerous practical design constraints within a single unified formulation. The approach, which is based upon coupled systems or modified Riccati and Lyapunov equations, encompasses time-domain linear-quadratic-Gaussian theory and frequency-domain H theory, as well as classical objectives such as gain and phase margin via the Nyquist circle criterion. In addition, this approach encompasses the optimal projection approach to reduced-order controller design. The current status of the overall theory will be reviewed including both continuous-time and discrete-time (sampled-data) formulations

    A compact 90 kilowatt electric heat source for heating inert gases to 1700 F

    Get PDF
    Design and fabrication of compact electric heat source for heating inert gase

    Design and fabrication of a low-specific-weight parabolic dish solar concentrator

    Get PDF
    A segmented design and fabrication and assembly techniques were developed for a 1.8 m (6 ft) diameter parabolic concentrator for space application. This design and these techniques were adaptable to a low cost, mass-produced concentrator. Minimal machining was required. Concentrator segments of formed magnesium were used. The concentrator weighed only 1.6 kg sq m (0.32 lbm/sq ft)

    Theoretical investigation into the possibility of very large moments in Fe16N2

    Get PDF
    We examine the mystery of the disputed high-magnetization \alpha"-Fe16N2 phase, employing the Heyd-Scuseria-Ernzerhof screened hybrid functional method, perturbative many-body corrections through the GW approximation, and onsite Coulomb correlations through the GGA+U method. We present a first-principles computation of the effective on-site Coulomb interaction (Hubbard U) between localized 3d electrons employing the constrained random-phase approximation (cRPA), finding only somewhat stronger on-site correlations than in bcc Fe. We find that the hybrid functional method, the GW approximation, and the GGA+U method (using parameters computed from cRPA) yield an average spin moment of 2.9, 2.6 - 2.7, and 2.7 \mu_B per Fe, respectively.Comment: 8 pages, 3 figure

    Spontaneous Raman scattering for simultaneous measurements of in-cylinder species

    Get PDF
    A technique for multi-species mole fraction measurement in internal combustion engines is described. The technique is based on the spontaneous Raman scattering. It can simultaneously provide the mole fractions of several species of N-2, O-2, H2O, CO2 and fuel. Using the system, simultaneous measurement of air/fuel ratio and burnt residual gas are carried out during the mixture process in a Controlled Auto Ignition (CAI) combustion engine. The accuracy and consistency of the measured results were confirmed by the measured air fuel ratio using an exhaust gas analyzer and independently calculated mole fraction values. Measurement of species mole fractions during combustion process has also been demonstrated. It shows that the SRS can provide valuable data on this process in a CAI combustion engine

    Uncovering the (un-)occupied electronic structure of a buried hybrid interface

    Get PDF
    The energy level alignment at organic/inorganic (o/i) semiconductor interfaces is crucial for any light-emitting or -harvesting functionality. Essential is the access to both occupied and unoccupied electronic states directly at the interface, which is often deeply buried underneath thick organic films and challenging to characterize. We use several complementary experimental techniques to determine the electronic structure of p-quinquephenyl pyridine (5P-Py) adsorbed on ZnO(10-10). The parent anchoring group, pyridine, significantly lowers the work function by up to 2.9 eV and causes an occupied in-gap state (IGS) directly below the Fermi level EFE_\text{F}. Adsorption of upright-standing 5P-Py also leads to a strong work function reduction of up to 2.1 eV and to a similar IGS. The latter is then used as an initial state for the transient population of three normally unoccupied molecular levels through optical excitation and, due to its localization right at the o/i interface, provides interfacial sensitivity, even for thick 5P-Py films. We observe two final states above the vacuum level and one bound state at around 2 eV above EFE_\text{F}, which we attribute to the 5P-Py LUMO. By the separate study of anchoring group and organic dye combined with the exploitation of the occupied IGS for selective interfacial photoexcitation this work provides a new pathway for characterizing the electronic structure at buried o/i interfaces

    First Experimental Evidence for Chaos-Assisted Tunneling in a Microwave Annular Billiard

    Full text link
    We report on first experimental signatures for chaos-assisted tunneling in a two-dimensional annular billiard. Measurements of microwave spectra from a superconducting cavity with high frequency resolution are combined with electromagnetic field distributions experimentally determined from a normal conducting twin cavity with high spatial resolution to resolve eigenmodes with properly identified quantum numbers. Distributions of so-called quasi-doublet splittings serve as basic observables for the tunneling between whispering gallery type modes localized to congruent, but distinct tori which are coupled weakly to irregular eigenstates associated with the chaotic region in phase space.Comment: 5 pages RevTex, 5 low-resolution figures (high-resolution figures: http://linac.ikp.physik.tu-darmstadt.de/heiko/chaospub.html, to be published in Phys. Rev. Let
    corecore