56 research outputs found

    Visual Experience Shapes Orthographic Representations in the Visual Word Form Area

    Get PDF
    Current neurocognitive research suggests that the efficiency of visual word recognition rests on abstract memory representations of written letters and words stored in the visual word form area (VWFA) in the left ventral occipitotemporal cortex. These representations are assumed to be invariant to visual characteristics such as font and case. In the present functional MRI study, we tested this assumption by presenting written words and varying the case format of the initial letter of German nouns (which are always capitalized) as well as German adjectives and adverbs (both usually in lowercase). As evident from a Word Type × Case Format interaction, activation in the VWFA was greater to words presented in unfamiliar case formats relative to familiar case formats. Our results suggest that neural representations of written words in the VWFA are not fully abstract and still contain information about the visual format in which words are most frequently perceived

    Visual word form processing deficits driven by severity of reading impairments in children with developmental dyslexia

    Get PDF
    The visual word form area (VWFA) in the left ventral occipito-temporal (vOT) cortex is key to fluent reading in children and adults. Diminished VWFA activation during print processing tasks is a common finding in subjects with severe reading problems. Here, we report fMRI data from a multicentre study with 140 children in primary school (7.9-12.2 years;55 children with dyslexia, 73 typical readers, 12 intermediate readers). All performed a semantic task on visually presented words and a matched control task on symbol strings. With this large group of children, including the entire spectrum from severely impaired to highly fluent readers, we aimed to clarify the association of reading fluency and left vOT activation during visual word processing. The results of this study confirm reduced word-sensitive activation within the left vOT in children with dyslexia. Interestingly, the association of reading skills and left vOT activation was especially strong and spatially extended in children with dyslexia. Thus, deficits in basic visual word form processing increase with the severity of reading disability but seem only weakly associated with fluency within the typical reading range suggesting a linear dependence of reading scores with VFWA activation only in the poorest readers

    A Common Left Occipito-Temporal Dysfunction in Developmental Dyslexia and Acquired Letter-By-Letter Reading?

    Get PDF
    We used fMRI to examine functional brain abnormalities of German-speaking dyslexics who suffer from slow effortful reading but not from a reading accuracy problem. Similar to acquired cases of letter-by-letter reading, the developmental cases exhibited an abnormal strong effect of length (i.e., number of letters) on response time for words and pseudowords.Corresponding to lesions of left occipito-temporal (OT) regions in acquired cases, we found a dysfunction of this region in our developmental cases who failed to exhibit responsiveness of left OT regions to the length of words and pseudowords. This abnormality in the left OT cortex was accompanied by absent responsiveness to increased sublexical reading demands in phonological inferior frontal gyrus (IFG) regions. Interestingly, there was no abnormality in the left superior temporal cortex which--corresponding to the onological deficit explanation--is considered to be the prime locus of the reading difficulties of developmental dyslexia cases.The present functional imaging results suggest that developmental dyslexia similar to acquired letter-by-letter reading is due to a primary dysfunction of left OT regions

    A neural oscillations perspective on phonological development and phonological processing in developmental dyslexia

    Get PDF
    Children’s ability to reflect upon and manipulate the sounds in words (’phonological awareness’) develops as part of natural language acquisition, supports reading acquisition, and develops further as reading and spelling are learned. Children with developmental dyslexia typically have impairments in phonological awareness. Many developmental factors contribute to individual differences in phonological development. One important source of individual differences may be the child’s sensory/neural processing of the speech signal from an amplitude modulation (~ energy or intensity variation) perspective, which may affect the quality of the sensory/neural representations (’phonological representations’) that support phonological awareness. During speech encoding, brain electrical rhythms (oscillations, rhythmic variations in neural excitability) re-calibrate their temporal activity to be in time with rhythmic energy variations in the speech signal. The accuracy of this neural alignment or ’entrainment’ process is related to speech intelligibility. Recent neural studies demonstrate atypical oscillatory function at slower rates in children with developmental dyslexia. Potential relations with the development of phonological awareness by children with dyslexia are discussed.Medical Research Council, G0400574 and G090237

    Differences in Brain Function and Changes with Intervention in Children with Poor Spelling and Reading Abilities

    Get PDF
    Previous fMRI studies in English-speaking samples suggested that specific interventions may alter brain function in language-relevant networks in children with reading and spelling difficulties, but this research strongly focused on reading impaired individuals. Only few studies so far investigated characteristics of brain activation associated with poor spelling ability and whether a specific spelling intervention may also be associated with distinct changes in brain activity patterns. We here investigated such effects of a morpheme-based spelling intervention on brain function in 20 children with comparatively poor spelling and reading abilities using repeated fMRI. Relative to 10 matched controls, children with comparatively poor spelling and reading abilities showed increased activation in frontal medial and right hemispheric regions and decreased activation in left occipito-temporal regions prior to the intervention, during processing of a lexical decision task. After five weeks of intervention, spelling and reading comprehension significantly improved in the training group, along with increased activation in the left temporal, parahippocampal and hippocampal regions. Conversely, the waiting group showed increases in right posterior regions. Our findings could indicate an increased left temporal activation associated with the recollection of the new learnt morpheme-based strategy related to successful training

    Costs and benefits of orthographic inconsistency in reading:evidence from a cross-linguistic comparison

    Get PDF
    We compared reading acquisition in English and Italian children up to late primary school analyzing RTs and errors as a function of various psycholinguistic variables and changes due to experience. Our results show that reading becomes progressively more reliant on larger processing units with age, but that this is modulated by consistency of the language. In English, an inconsistent orthography, reliance on larger units occurs earlier on and it is demonstrated by faster RTs, a stronger effect of lexical variables and lack of length effect (by fifth grade). However, not all English children are able to master this mode of processing yielding larger inter-individual variability. In Italian, a consistent orthography, reliance on larger units occurs later and it is less pronounced. This is demonstrated by larger length effects which remain significant even in older children and by larger effects of a global factor (related to speed of orthographic decoding) explaining changes of performance across ages. Our results show the importance of considering not only overall performance, but inter-individual variability and variability between conditions when interpreting cross-linguistic differences

    The neural bases of the pseudohomophone effect: Phonological constraints on lexico-semantic access in reading.

    Get PDF
    We investigated phonological processing in normal readers to answer the question to what extent phonological recoding is active during silent reading and if or how it guides lexico-semantic access. We addressed this issue by looking at pseudohomophone and baseword frequency effects in lexical decisions with event-related functional magnetic resonance imaging (fMRI). The results revealed greater activation in response to pseudohomophones than for well-controlled pseudowords in the left inferior/superior frontal and middle temporal cortex, left insula, and left superior parietal lobule. Furthermore, we observed a baseword frequency effect for pseudohomophones (e.g., FEAL) but not for pseudowords (e.g., FEEP). This baseword frequency effect was qualified by activation differences in bilateral angular and left supramarginal, and bilateral middle temporal gyri for pseudohomophones with low- compared to high-frequency basewords. We propose that lexical decisions to pseudohomophones involves phonology-driven lexico-semantic activation of their basewords and that this is converging neuroimaging evidence for automatically activated phonological representations during silent reading in experienced readers
    corecore