53 research outputs found

    Temperature-Dependent Effects of Cutaneous Bacteria on a Frog’s Tolerance of Fungal Infection

    Get PDF
    Defense against pathogens is one of many benefits that bacteria provide to animal hosts. A clearer understanding of how changes in the environment affect the interactions between animals and their microbial benefactors is needed in order to predict the impact and dynamics of emerging animal diseases. Due to its dramatic effects on the physiology of animals and their pathogens, temperature may be a key variable modulating the level of protection that beneficial bacteria provide to their animal hosts. Here we investigate how temperature and the makeup of the skin microbial community affect the susceptibility of amphibian hosts to infection by Batrachochytrium dendrobatidis (Bd), one of two fungal pathogens known to cause the disease chytridiomycosis. To do this, we manipulated the skin bacterial communities of susceptible hosts, northern cricket frogs (Acris crepitans), prior to exposing these animals to Bd under two different ecologically relevant temperatures. Our manipulations included one treatment where antibiotics were used to reduce the skin bacterial community, one where the bacterial community was augmented with the antifungal bacterium, Stenotrophomonas maltophilia, and one in which the frog’s skin bacterial community was left intact. We predicted that frogs with reduced skin bacterial communities would be more susceptible (i.e., less resistant to and/or tolerant of Bd infection), and frogs with skin bacterial communities augmented with the known antifungal bacterium would be less susceptible to Bd infection and chytridiomycosis. However, we also predicted that this interaction would be temperature dependent. We found a strong effect of temperature but not of skin microbial treatment on the probability and intensity of infection in Bd-exposed frogs. Whether temperature affected survival; however, it differed among our skin microbial treatment groups, with animals having more S. maltophilia on their skin surviving longer at 14 but not at 26°C. Our results suggest that temperature was the predominant factor influencing Bd’s ability to colonize the host (i.e., resistance) but that the composition of the cutaneous bacterial community was important in modulating the host’s ability to survive (i.e., tolerate) a heavy Bd infection

    Beyond A Vision For The Future: Tangible Steps To Engage Diverse Participants In Inclusive Field Experiences

    Get PDF
    Synopsis Recent strides toward improving diversity, equity, and inclusion (DEI) in field biology present a unique opportunity for transdisciplinary exploration of the impacts and state of a topic that has remained hereto largely underexplored and under-discussed in the academic setting. Within current literature, themes of racial and gender inequity, power imbalances, unsafe environments, and underdeveloped infrastructure and resources are widespread. Thus, we organized a symposium that addressed these compelling issues in field biology DEI through a multitude of experiential and academic lenses. This article will orient the reader to the special issue and offer summative goals and outcomes of the symposium that can provide tangible steps toward creating meaningful improvements in the state of DEI and safety in field settings

    Carotenoid Supplementation Enhances Reproductive Success in Captive Strawberry Poison Frogs (Oophaga Pumilio)

    Get PDF
    Amphibians are currently experiencing the most severe declines in biodiversity of any vertebrate, and their requirements for successful reproduction are poorly understood. Here, we show that supplementing the diet of prey items (fruit flies) with carotenoids has strong positive effects on the reproduction of captive strawberry poison frogs (Oophaga pumilio), substantially increasing the number of metamorphs produced by pairs. This improved reproduction most likely arose via increases in the quality of both the fertilized eggs from which tadpoles develop and trophic eggs that are fed to tadpoles by mothers. Frogs in this colony had previously been diagnosed with a Vitamin A deficiency, and this supplementation may have resolved this issue. These results support growing evidence of the importance of carotenoids in vertebrate reproduction and highlight the nuanced ways in which nutrition constrains captive populations. Zoo Biol. XX:XX-XX, 2013

    Assay validation and interspecific comparison of salivary glucocorticoids in three amphibian species

    Get PDF
    Amphibians are one of the most threatened groups of species, facing stressors ranging from habitat degradation and pollution to disease and overexploitation. Stress hormones (glucocorticoids, GCs) provide one quantitative metric of stress,and developing non-invasive methods for measuring GCs in amphibians would clarify how diverse environmental stressors impact individual health in this taxonomic group. Saliva is an advantageous matrix for quantifying GCs, as it is sampled less invasively than plasma while still detecting both baseline and acute elevation of GCs within a short timeframe. Little work has employed this method in amphibian species, and it has never been pharmacologically and biologically validated. Here, we conduct analytical, pharmacological and biological validation experiments for measuring salivary corticosterone in three amphibian species: the American bullfrog (Rana catesbeiana), the green frog (Rana clamitans) and the northern leopard frog (Rana pipiens). These species are faced with a broad range of environmental challenges, and in part of its range R. pipiens populations are currently in decline. In addition to demonstrating that this method can be reliably used in multiple amphibian species, we present an examination of intrinsic biological factors (sex, body condition) that may contribute to GC secretion, and a demonstration that saliva can be collected from free-living animals in the field to quantify corticosterone. Our findings suggest that saliva may be useful for less invasively quantifying GCs in many amphibian species

    Thermal Performance Curves of Multiple Isolates of Batrachochytrium dendrobatidis, a Lethal Pathogen of Amphibians

    Get PDF
    Emerging infectious disease is a key factor in the loss of amphibian diversity. In particular, the disease chytridiomycosis has caused severe declines around the world. The lethal fungal pathogen that causes chytridiomycosis, Batrachochytrium dendrobatidis (Bd), has affected amphibians in many different environments. One primary question for researchers grappling with disease-induced losses of amphibian biodiversity is what abiotic factors drive Bd pathogenicity in different environments. To study environmental influences on Bd pathogenicity, we quantified responses of Bd phenotypic traits (e.g., viability, zoospore densities, growth rates, and carrying capacities) over a range of environmental temperatures to generate thermal performance curves. We selected multiple Bd isolates that belong to a single genetic lineage but that were collected across a latitudinal gradient. For the population viability, we found that the isolates had similar thermal optima at 21°C, but there was considerable variation among the isolates in maximum viability at that temperature. Additionally, we found the densities of infectious zoospores varied among isolates across all temperatures. Our results suggest that temperatures across geographic point of origin (latitude) may explain some of the variation in Bd viability through vertical shifts in maximal performance. However, the same pattern was not evident for other reproductive parameters (zoospore densities, growth rates, fecundity), underscoring the importance of measuring multiple traits to understand variation in pathogen responses to environmental conditions. We suggest that variation among Bd genetic variants due to environmental factors may be an important determinant of disease dynamics for amphibians across a range of diverse environments

    Genomic Takeover by Transposable Elements in the Strawberry Poison Frog

    Get PDF
    We sequenced the genome of the strawberry poison frog, Oophaga pumilio, at a depth of 127.5× using variable insert size libraries. The total genome size is estimated to be 6.76 Gb, of which 4.76 Gb are from high copy number repetitive elements with low differentiation across copies. These repeats encompass DNA transposons, RNA transposons, and LTR retrotransposons, including at least 0.4 and 1.0 Gb of Mariner/Tc1 and Gypsy elements, respectively. Expression data indicate high levels of gypsy and Mariner/Tc1 expression in ova of O. pumilio compared with Xenopus laevis. We further observe phylogenetic evidence for horizontal transfer (HT) of Mariner elements, possibly between fish and frogs. The elements affected by HT are present in high copy number and are highly expressed, suggesting ongoing proliferation after HT. Our results suggest that the large amphibian genome sizes, at least partially, can be explained by a process of repeated invasion of new transposable elements that are not yet suppressed in the germline. We also find changes in the spliceosome that we hypothesize are related to permissiveness of O. pumilio to increases in intron length due to transposon proliferation. Finally, we identify the complement of ion channels in the first genomic sequenced poison frog and discuss its relation to the evolution of autoresistance to toxins sequestered in the skin

    Selection on Visual Opsin Genes in Diurnal Neotropical Frogs and Loss of the SWS2 Opsin in Poison Frogs

    Get PDF
    Amphibians are ideal for studying visual system evolution because their biphasic (aquatic and terrestrial) life history and ecological diversity expose them to a broad range of visual conditions. Here, we evaluate signatures of selection on visual opsin genes across Neotropical anurans and focus on three diurnal clades that are well-known for the concurrence of conspicuous colors and chemical defense (i.e., aposematism): poison frogs (Dendrobatidae), Harlequin toads (Bufonidae: Atelopus), and pumpkin toadlets (Brachycephalidae: Brachycephalus). We found evidence of positive selection on 44 amino acid sites in LWS, SWS1, SWS2, and RH1 opsin genes, of which one in LWS and two in RH1 have been previously identified as spectral tuning sites in other vertebrates. Given that anurans have mostly nocturnal habits, the patterns of selection revealed new sites that might be important in spectral tuning for frogs, potentially for adaptation to diurnal habits and for color-based intraspecific communication. Furthermore, we provide evidence that SWS2, normally expressed in rod cells in frogs and some salamanders, has likely been lost in the ancestor of Dendrobatidae, suggesting that under low-light levels, dendrobatids have inferior wavelength discrimination compared to other frogs. This loss might follow the origin of diurnal activity in dendrobatids and could have implications for their behavior. Our analyses show that assessments of opsin diversification in across taxa could expand our understanding of the role of sensory system evolution in ecological adaptation.</p

    Response to comment on 'Amphibian fungal panzootic causes catastrophic and ongoing loss of biodiversity'

    Get PDF
    Lambert et al. question our retrospective and holistic epidemiological assessment of the role of chytridiomycosis in amphibian declines. Their alternative assessment is narrow and provides an incomplete evaluation of evidence. Adopting this approach limits understanding of infectious disease impacts and hampers conservation efforts. We reaffirm that our study provides unambiguous evidence that chytridiomycosis has affected at least 501 amphibian species
    • 

    corecore