69 research outputs found

    Identification of aquatic mycobacteria based on sequence analysis of the 16S-23S rRNA internal transcribed spacer region

    Get PDF
    Purpose. Mycobacteria are common causative agents of bacterial infections in many species of freshwater and marine fish. Identification of mycobacteria to the species level based on phenotypic tests is inappropriate and time consuming. Molecular methods such as partial or entire gene sequence determination in mycobacteria have been employed to resolve these problems. The objective of this study was to assess the use of sequence analysis of the mycobacterial 16S–23S internal transcribed spacer (ITS) region for the identification of different aquatic mycobacteria species. Methodology. Using published primers, the ITS sequences of 64 field and reference strains were determined. Results/Key findings. The identity of all isolates previously identified as Mycobacterium marinum by RFLP was confirmed as M. marinum by sequence analysis. With the exception of five rapidly growing mycobacteria isolates, all other mycobacteria were easily identified by sequencing of the ITS region. Using this spacer region, it was possible to differentiate between slowly growing and rapidly growing mycobacteria, even before sequence analysis, by the size of the PCR product, although species identification could not be made by size alone. Conclusion. Overall, direct sequencing of this genetic element following PCR has been shown to be useful in the identification of aquatic mycobacteria species. With regard to the variability of the ITS region for different mycobacteria isolates, this may be a useful tool in epidemiological studies

    A hybrid-capture approach to reconstruct the phylogeny of Scleractinia (Cnidaria: Hexacorallia)

    Get PDF
    A well-supported evolutionary tree representing most major lineages of scleractinian corals is in sight with the development and application of phylogenomic approaches. Specifically, hybrid-capture techniques are shedding light on the evolution and systematics of corals. Here, we reconstructed a broad phylogeny of Scleractinia to test previous phylogenetic hypotheses inferred from a few molecular markers, in particular, the relationships among major scleractinian families and genera, and to identify clades that require further research. We analysed 449 nuclear loci from 422 corals, comprising 266 species spanning 26 families, combining data across whole genomes, transcriptomes, hybrid capture and low-coverage sequencing to reconstruct the largest phylogenomic tree of scleractinians to date. Due to the large number of loci and data completeness (less than 38% missing data), node supports were high across shallow and deep nodes with incongruences observed in only a few shallow nodes. The “Robust” and “Complex” clades were recovered unequivocally, and our analyses confirmed that Micrabaciidae Vaughan, 1905 is sister to the “Robust” clade, transforming our understanding of the “Basal” clade. Several families remain polyphyletic in our phylogeny, including Deltocyathiidae Kitahara, Cairns, Stolarski & Miller, 2012, Caryophylliidae Dana, 1846, and Coscinaraeidae Benzoni, Arrigoni, Stefani & Stolarski, 2012, and we hereby formally proposed the family name Pachyseridae Benzoni & Hoeksema to accommodate Pachyseris Milne Edwards & Haime, 1849, which is phylogenetically distinct from Agariciidae Gray, 1847. Results also revealed species misidentifications and inconsistencies within morphologically complex clades, such as Acropora Oken, 1815 and Platygyra Ehrenberg, 1834, underscoring the need for reference skeletal material and topotypes, as well as the importance of detailed taxonomic work. The approach and findings here provide much promise for further stabilising the topology of the scleractinian tree of life and advancing our understanding of coral evolution

    Whole cell inactivated autogenous vaccine effectively protects red Nile tilapia (Oreochromis niloticus) against francisellosis via intraperitoneal injection

    Get PDF
    Francisella noatunensis subsp. orientalis is a pathogen of tilapia and other warm‐water fish for which no vaccines are commercially available. In this study, a whole cell formalin‐inactivated vaccine was developed for the first time using the highly virulent isolate STIR‐GUS‐F2f7 and the oil‐based adjuvant Montanideℱ ISA 763A VG. The efficacy of the vaccine was assessed in red Nile tilapia via intraperitoneal (i.p.) injection using homologous experimental infection and correlates of protection such as seral antibody production and bacterial loads in the spleen. For immunization, fish were i.p. injected with 0.1 ml of the vaccine, the adjuvant alone or PBS. At 840 degree days post‐vaccination, all fish were i.p. injected with 4.0 × 103 CFU/fish of pathogenic bacteria. The RPS at the end of the trial was 100% in the vaccinated group with significantly higher survival than in the adjuvant and control groups. The RPS in the adjuvant group was 42%, and no significant difference was seen in survival between this and the PBS group. Moreover, significantly higher antibody titres in the serum and significantly lower bacterial loads in the spleen were detected in the vaccinated fish by ELISA and qPCR, respectively. These findings highlight the potential of autogenous vaccines for controlling francisellosis in tilapia

    Reclassification of Francisella noatunensis subsp. orientalis Ottem et al. 2009 as Francisella orientalis sp. nov., Francisella noatunensis subsp. chilensis subsp. nov. and emended description of Francisella noatunensis

    Get PDF
    Francisella noatunensis is a fastidious facultative intracellular bacterial pathogen that causes ‘piscine francisellosis’, a serious disease affecting both marine and fresh water farmed and wild fish worldwide. Currently two F. noatunensis subspecies are recognized, i.e. F. noatunensis subsp. noatunensis and F. noatunensis subsp. orientalis . In the present study, the taxonomy of F. noatunensis was revisited using a polyphasic approach, including whole genome derived parameters such as digital DNA–DNA hybridization, whole genome average nucleotide identity (wg-ANIm), whole genome phylogenetic analysis, whole genome G+C content, metabolic fingerprinting and chemotaxonomic analyses. The results indicated that isolates belonging to F. noatunensis subsp. orientalis represent a phenotypically and genetically homogenous taxon, clearly distinguishable from F. noatunensis subsp. noatunensis that fulfils requirements for separate species status. We propose, therefore, elevation of F. noatunensis subsp. orientalis to the species rank as Francisella orientalis sp. nov. with the type strain remaining as Ehime-1T (DSM 21254T=LMG 24544T). Furthermore, we identified sufficient phenotypic and genetic differences between F. noatunensis subsp. noatunensis recovered from diseased farmed Atlantic salmon in Chile and those isolated from wild and farmed Atlantic cod in Northern Europe to warrant proposal of the Chilean as a novel F. noatunensis subspecies, i.e. Francisella noatunensis subsp. chilensis subsp. nov. with strain PQ1106T (CECT 9798T=NCTC14375T) as the type strain. Finally, we emend the description of F. noatunensis by including further metabolic information and the description of atypical strains

    An Overview of the 2014 ALMA Long Baseline Campaign

    Get PDF
    A major goal of the Atacama Large Millimeter/submillimeter Array (ALMA) is to make accurate images with resolutions of tens of milliarcseconds, which at submillimeter (submm) wavelengths requires baselines up to ~15 km. To develop and test this capability, a Long Baseline Campaign (LBC) was carried out from September to late November 2014, culminating in end-to-end observations, calibrations, and imaging of selected Science Verification (SV) targets. This paper presents an overview of the campaign and its main results, including an investigation of the short-term coherence properties and systematic phase errors over the long baselines at the ALMA site, a summary of the SV targets and observations, and recommendations for science observing strategies at long baselines. Deep ALMA images of the quasar 3C138 at 97 and 241 GHz are also compared to VLA 43 GHz results, demonstrating an agreement at a level of a few percent. As a result of the extensive program of LBC testing, the highly successful SV imaging at long baselines achieved angular resolutions as fine as 19 mas at ~350 GHz. Observing with ALMA on baselines of up to 15 km is now possible, and opens up new parameter space for submm astronomy.Comment: 11 pages, 7 figures, 2 tables; accepted for publication in the Astrophysical Journal Letters; this version with small changes to affiliation

    Sustained IFN signaling is associated with delayed development of SARS-CoV-2-specific immunity.

    Get PDF
    Plasma RNAemia, delayed antibody responses and inflammation predict COVID-19 outcomes, but the mechanisms underlying these immunovirological patterns are poorly understood. We profile 782 longitudinal plasma samples from 318 hospitalized patients with COVID-19. Integrated analysis using k-means reveals four patient clusters in a discovery cohort: mechanically ventilated critically-ill cases are subdivided into good prognosis and high-fatality clusters (reproduced in a validation cohort), while non-critical survivors segregate into high and low early antibody responders. Only the high-fatality cluster is enriched for transcriptomic signatures associated with COVID-19 severity, and each cluster has distinct RBD-specific antibody elicitation kinetics. Both critical and non-critical clusters with delayed antibody responses exhibit sustained IFN signatures, which negatively correlate with contemporaneous RBD-specific IgG levels and absolute SARS-CoV-2-specific B and CD4 <sup>+</sup> T cell frequencies. These data suggest that the "Interferon paradox" previously described in murine LCMV models is operative in COVID-19, with excessive IFN signaling delaying development of adaptive virus-specific immunity

    Characterisation of proteins in excretory/secretory products collected from salmon lice, Lepeophtheirus salmonis

    Get PDF
    Background  The salmon louse, Lepeophtheirus salmonis, is an ectoparasitic copepod which feeds on the mucus, skin and blood of salmonid fish species. The parasite can persist on the surface of the fish without any effective control being exerted by the host immune system. Other ectoparasitic invertebrates produce compounds in their saliva, excretions and/or secretions which modulate the host immune responses allowing them to remain on or in the host during development. Similarly, compounds are produced in secretions of L. salmonis which are thought to be responsible for immunomodulation of the host responses as well as other aspects of crucial host-parasite interactions.  Methods  In this study we have identified and characterised the proteins in the excretory/secretory (E/S) products of L. salmonis using LC-ESI-MS/MS.  Results  In total 187 individual proteins were identified in the E/S collected from adult lice and pre-adult sea lice. Fifty-three proteins, including 13 serine-type endopeptidases, 1 peroxidase and 5 vitellogenin-like proteins were common to both adult and pre-adult E/S products. One hundred and seven proteins were identified in the adult E/S but not in the pre-adult E/S and these included serine and cysteine-type endopeptidases, vitellogenins, sphingomyelinase and calreticulin. A total of 27 proteins were identified in pre-adult E/S products but not in adult E/S.  Conclusions  The assigned functions of these E/S products and the potential roles they play in host-parasite interaction is discussed

    Risk factors for healthcare-associated infection in pediatric intensive care units: a systematic review

    Full text link

    The 2014 ALMA Long Baseline Campaign: An Overview

    Get PDF
    A major goal of the Atacama Large Millimeter/submillimeter Array (ALMA) is to make accurate images with resolutions of tens of milliarcseconds, which at submillimeter (submm) wavelengths requires baselines up to ~15 km. To develop and test this capability, a Long Baseline Campaign (LBC) was carried out from September to late November 2014, culminating in end-to-end observations, calibrations, and imaging of selected Science Verification (SV) targets. This paper presents an overview of the campaign and its main results, including an investigation of the short-term coherence properties and systematic phase errors over the long baselines at the ALMA site, a summary of the SV targets and observations, and recommendations for science observing strategies at long baselines. Deep ALMA images of the quasar 3C138 at 97 and 241 GHz are also compared to VLA 43 GHz results, demonstrating an agreement at a level of a few percent. As a result of the extensive program of LBC testing, the highly successful SV imaging at long baselines achieved angular resolutions as fine as 19 mas at ~350 GHz. Observing with ALMA on baselines of up to 15 km is now possible, and opens up new parameter space for submm astronomy

    Finishing the euchromatic sequence of the human genome

    Get PDF
    The sequence of the human genome encodes the genetic instructions for human physiology, as well as rich information about human evolution. In 2001, the International Human Genome Sequencing Consortium reported a draft sequence of the euchromatic portion of the human genome. Since then, the international collaboration has worked to convert this draft into a genome sequence with high accuracy and nearly complete coverage. Here, we report the result of this finishing process. The current genome sequence (Build 35) contains 2.85 billion nucleotides interrupted by only 341 gaps. It covers ∌99% of the euchromatic genome and is accurate to an error rate of ∌1 event per 100,000 bases. Many of the remaining euchromatic gaps are associated with segmental duplications and will require focused work with new methods. The near-complete sequence, the first for a vertebrate, greatly improves the precision of biological analyses of the human genome including studies of gene number, birth and death. Notably, the human enome seems to encode only 20,000-25,000 protein-coding genes. The genome sequence reported here should serve as a firm foundation for biomedical research in the decades ahead
    • 

    corecore