158 research outputs found

    Adolescent obesity increases significantly in second and third generation U.S. immigrants: The National Longitudinal Study of Adolescent Health

    Get PDF
    Little is known concerning obesity patterns of ethnic subpopulations in the U.S. and the effects of acculturation on these patterns. Adolescent obesity, a major public health problem, has important health, social and economic consequences for the adolescent. The National Longitudinal Study of Adolescent Health survey is unique in the size of the adolescent sample and in its ability to provide large representative samples of Anglo, African-American, Hispanic and Asian-American adolescents. A nationally representative sample of 13,783 adolescents was studied. Measurements of weight and height collected in the second wave of the survey were used to study adolescent obesity. Multivariate logit techniques were used to provide an understanding of the ethnic, age, gender and intergenerational patterns of adolescent obesity. Comparisons are presented between the NHANES III results and those from the Adolescent Health Survey. The smoothed version of the NHANES I 85th percentile cut-off was used for the measure of obesity in this paper. For the total sample, 26.5% were obese. The rates were as follows: white non-Hispanics, 24.2%; black non-Hispanics, 30.9%; all Hispanics, 30.4%; and all Asian-Americans, 20.6%. Important variations within the Hispanic and Asian-American subpopulations are presented. The Chinese (15.3%) and Filipino (18.5%) samples showed substantially lower obesity than non-Hispanic whites. All groups showed more obesity among males than among females, except for blacks (27.4% for males and 34.0% for females). Asian-American and Hispanic adolescents born in the U.S. are more than twice as likely to be obese as are first generation residents of the 50 states

    WASP-120b, WASP-122b and WASP-123b: Three newly discovered planets from the WASP-South survey

    Get PDF
    We present the discovery by the WASP-South survey of three planets transiting moderately bright stars (V ~ 11). WASP-120b is a massive (5.0MJup) planet in a 3.6-day orbit that we find likely to be eccentric (e = 0.059+0.025-0.018) around an F5 star. WASP-122b is a hot-Jupiter (1.37MJup, 1.79RJup) in a 1.7-day orbit about a G4 star. Our predicted transit depth variation cause by the atmosphere of WASP-122b suggests it is well suited to characterisation. WASP-123b is a hot-Jupiter (0.92MJup, 1.33RJup) in a 3.0-day orbit around an old (~ 7 Gyr) G5 star.Comment: 15 pages, 10 figures, 5 table

    Giant planet migration, disk evolution, and the origin of transitional disks

    Full text link
    We present models of giant planet migration in evolving protoplanetary disks. Our disks evolve subject to viscous transport of angular momentum and photoevaporation, while planets undergo Type II migration. We use a Monte Carlo approach, running large numbers of models with a range in initial conditions. We find that relatively simple models can reproduce both the observed radial distribution of extra-solar giant planets, and the lifetimes and accretion histories of protoplanetary disks. The use of state-of-the-art photoevaporation models results in a degree of coupling between planet formation and disk clearing, which has not been found previously. Some accretion across planetary orbits is necessary if planets are to survive at radii <~1.5AU, and if planets of Jupiter mass or greater are to survive in our models they must be able to form at late times, when the disk surface density in the formation region is low. Our model forms two different types of "transitional" disks, embedded planets and clearing disks, which show markedly different properties. We find that the observable properties of these systems are broadly consistent with current observations, and highlight useful observational diagnostics. We predict that young transition disks are more likely to contain embedded giant planets, while older transition disks are more likely to be undergoing disk clearing.Comment: 13 pages, 9 figures. Accepted for publication in Ap

    The thermal emission of the exoplanets WASP-1b and WASP-2b

    Full text link
    We present a comparative study of the thermal emission of the transiting exoplanets WASP-1b and WASP-2b using the Spitzer Space Telescope. The two planets have very similar masses but suffer different levels of irradiation and are predicted to fall either side of a sharp transition between planets with and without hot stratospheres. WASP-1b is one of the most highly irradiated planets studied to date. We measure planet/star contrast ratios in all four of the IRAC bands for both planets (3.6-8.0um), and our results indicate the presence of a strong temperature inversion in the atmosphere of WASP-1b, particularly apparent at 8um, and no inversion in WASP-2b. In both cases the measured eclipse depths favor models in which incident energy is not redistributed efficiently from the day side to the night side of the planet. We fit the Spitzer light curves simultaneously with the best available radial velocity curves and transit photometry in order to provide updated measurements of system parameters. We do not find significant eccentricity in the orbit of either planet, suggesting that the inflated radius of WASP-1b is unlikely to be the result of tidal heating. Finally, by plotting ratios of secondary eclipse depths at 8um and 4.5um against irradiation for all available planets, we find evidence for a sharp transition in the emission spectra of hot Jupiters at an irradiation level of 2 x 10^9 erg/s/cm^2. We suggest this transition may be due to the presence of TiO in the upper atmospheres of the most strongly irradiated hot Jupiters.Comment: 10 pages, submitted to Ap

    Do Social Bonds Matter for Emerging Adults?

    Get PDF
    The extent to which social bonds and turning points influence criminal activity has been the focus of much empirical research. However, there have been few empirical studies exploring social bonds and turning points and offending for those who have experienced emerging adulthood, a recently identified stage of the life course. Using data from the National Longitudinal Study of Adolescent Health we examined if indicators of social bonds and turning points were predictors of criminal offending. Several of the turning points and social bonds included in these analyses were found to influence decreases in criminal offending for a cohort of emerging adults. We extend previous research by examining the influence of social bonds and turning points on patterns of criminal offending during emerging adulthood

    Strong size evolution of the most massive galaxies since z~2

    Get PDF
    Using the combined capabilities of the large near-infrared Palomar/DEEP-2 survey, and the superb resolution of the ACS HST camera, we explore the size evolution of 831 very massive galaxies (M*>10^{11}h_{70}^{-2}M_sun) since z~2. We split our sample according to their light concentration using the Sersic index n. At a given stellar mass, both low (n2.5) concentrated objects were much smaller in the past than their local massive counterparts. This evolution is particularly strong for the highly concentrated (spheroid-like) objects. At z~1.5, massive spheroid-like objects were a factor of 4(+-0.4) smaller (i.e. almost two orders of magnitudes denser) than those we see today. These small sized, high mass galaxies do not exist in the nearby Universe, suggesting that this population merged with other galaxies over several billion years to form the largest galaxies we see today.Comment: MNRAS in press, 13 pages, 11 figures. Data Table will be published in its integrity in the MNRAS online versio

    Seven transiting hot-Jupiters from WASP-South, Euler and TRAPPIST: WASP-47b, WASP-55b, WASP-61b, WASP-62b, WASP-63b, WASP-66b & WASP-67b

    Full text link
    We present seven new transiting hot Jupiters from the WASP-South survey. The planets are all typical hot Jupiters orbiting stars from F4 to K0 with magnitudes of V = 10.3 to 12.5. The orbital periods are all in the range 3.9--4.6 d, the planetary masses range from 0.4--2.3 Mjup and the radii from 1.1--1.4 Mjup. In line with known hot Jupiters, the planetary densities range from Jupiter-like to inflated (rho = 0.13--1.07 rho_jup). We use the increasing numbers of known hot Jupiters to investigate the distribution of their orbital periods and the 3--4-d "pile-up".Comment: 15 page

    Peculiar architectures for the WASP-53 and WASP-81 planet-hosting systems

    Get PDF
    We report the detection of two new systems containing transiting planets. Both were identified by WASP as worthy transiting planet candidates. Radial velocity observations quickly verified that the photometric signals were indeed produced by two transiting hot Jupiters. Our observations also show the presence of additional Doppler signals. In addition to short-period hot Jupiters, we find that the WASP-53 and WASP-81 systems also host brown dwarfs, on fairly eccentric orbits with semimajor axes of a few astronomical units. WASP-53c is over 16 MJupsin ic and WASP-81c is 57 MJupsin ic. The presence of these tight, massive companions restricts theories of how the inner planets were assembled. We propose two alternative interpretations: the formation of the hot Jupiters within the snow line or the late dynamical arrival of the brown dwarfs after disc dispersal. We also attempted to measure the Rossiter–McLaughlin effect for both hot Jupiters. In the case of WASP-81b, we fail to detect a signal. For WASP-53b, we find that the planet is aligned with respect to the stellar spin axis. In addition we explore the prospect of transit-timing variations, and of using Gaia's astrometry to measure the true masses of both brown dwarfs and also their relative inclination with respect to the inner transiting hot Jupiters.Publisher PDFPeer reviewe

    WASP-121 b : a hot Jupiter close to tidal disruption transiting an active F star

    Get PDF
    We present the discovery by the WASP-South survey of WASP-121 b, a new remarkable short-period transiting hot Jupiter. The planet has a mass of 1.183+0.064−0.062 MJup, a radius of 1.865 ± 0.044 RJup, and transits every 1.274 9255+0.000 0020−0.000 0025 days an active F6-type main-sequence star (V = 10.4, 1.353+0.080 −0.079 M, 1.458 ± 0.030 R, Teff = 6460 ± 140 K). A notable property of WASP-121 b is that its orbital semimajor axis is only ~1.15 times larger than its Roche limit, which suggests that the planet is close to tidal disruption. Furthermore, its large size and extreme irradiation (~7.1 109 erg s−1 cm−2) make it an excellent target for atmospheric studies via secondary eclipse observations. Using the TRAnsiting Planets and PlanetesImals Small Telescope, we indeed detect its emission in the z'-band at better than ~4σ, the measured occultation depth being 603 ± 130 ppm. Finally, from a measurement of the Rossiter–McLaughlin effect with the CORALIE spectrograph, we infer a sky-projected spin-orbit angle of 257.8+5.3−5.5. This result may suggest a significant misalignment between the spin axis of the host star and the orbital plane of the planet. If confirmed, this high misalignment would favour a migration of the planet involving strong dynamical events with a third body
    • …
    corecore